We agree with Jin et al. (2013) that astrocytes accumulate extracellular K+. They discuss how differences in (a) resting extracellular space (ECS) volume, (b) diffusion-limited water/K+ transport, and (c) ECS contraction during K+ reuptake may differently affect astrocytic K+ uptake in wild-type animals and in mice with aquaporin-4 (Aqp4) knockout. The first of these factors is well studied, and it is logical that a certain extracellular K+ concentration ([K+]e) increase in a larger volume takes longer to clear, prolonging neuroexcitation. But what causes the increase?

Recently, Iliff et al. (2012) proposed that (a) cerebrospinal fluid enters the brain parenchyma along para-arterial routes; (b) interstitial fluid (ISF) from the ECS with its waste products is cleared from the brain along para-venous routes; and (c) convective (bulk) flow-mediated ISF flow between these influx and clearance routes is facilitated by astrocytic AQP4–dependent water fluxes. They showed that Aqp4 gene deletion slowed bulk flow–dependent solute clearance by ∼70% and suggested that during inhibition of bulk flow–dependent clearance, ECS dilation could be a compensatory mechanism to facilitate diffusional clearance of extracellular solutes, particularly of those with larger molecular weights, which is dependent on the ECS dimensions (Syková and Nicholson, 2008). The increased ECS might be created by the smaller effect of Aqp4 deletion on the arterial side than on the venous side of the system, indicated by lower arterial-side density of immunohistochemically determined AQP4 expression in the adjoining astrocytic endfeet (Iliff et al., 2012). Water permeability is not zero in astrocytes from Aqp4-deficient mice (Solenov et al., 2004), and the larger hydrostatic gradient on the arterial side may provide sufficient arterial water exit with less AQP4 dependence.

According to the second proposal by Jin et al. (2013), diffusion of K+ and non-K+ solutes in astrocyte cytoplasm should establish an osmotic driving force for transport of H2O and K+ into the cells, leading to significant uptake of K+ in astrocytes. Such a mechanism is not consistent with the demonstration that cellular K+ uptake from brain ECS in the adult mammalian brain cortex except at very highly elevated [K+]e is almost entirely Na+,K+-ATPase dependent, indicated by its virtually complete inhibition by ouabain alkaloids (Xiong and Stringer, 2000; D’Ambrosio et al., 2002; MacAulay and Zeuthen, 2012), reasonably specific inhibitors of the Na+,K+-ATPase. Computer simulations have similarly shown that K+ channel activity at rest and during low frequency firing does not contribute to astrocytic K+ uptake, because the Nernst potassium equilibrium potential, EK, normally is more negative than the membrane potential (Somjen et al., 2008; Soe et al., 2009). However, at highly elevated [K+]e, channel activity aided transporter-mediated K+ clearance to some degree (an astrocytic effect), an observation confirmed in a comparison between wild-type and Kir4.1−/− mice (Chever et al., 2010). D’Ambrosio et al. (2002) also showed that the only major effect of K+ channel blockade normally is an increase in the poststimulatory undershoot in [K+]e. A similar effect was reported by Chever et al. (2010) in Kir4.1−/− mice.

Na+,K+-ATPase expression is pronounced in both neurons and astrocytes (Peng et al., 1997; Li et al., 2013). After most normally occurring physiological neuronal activities, [K+]e increases by ≤5 mM from its normal level of 3–5 mM, and this increase is handled by the Na+,K+-ATPase alone, both in the brain in vivo (MacAulay and Zeuthen, 2012) and in cultured astrocytes (Xu et al., 2013). Its action involves no direct association between transport of ions (combined Na+ efflux and K+ influx in a 3:2 ratio [Thomas, 1972]) and H2O. It will therefore not create an osmotic driving force into astrocytes. A second mechanism, which operates at higher [K+]e, additionally enrolls NKCC1, which in the adult central nervous system is restricted to astrocytes (Deisz et al., 2011), and transports Na+, K+, 2 Cl, and water together (Epstein and Silva, 1985; Hamann et al., 2005, 2010). It is stimulated by vasopressin, and Aqp4 knockout has no effect in cultured mouse astrocytes on vasopressin-stimulated, NKCC1-mediated increase in swelling, confirming that NKCC1-mediated uptake of H2O occurs via the cotransporter itself and is AQP independent (Peng et al., 2012). In contrast, hypotonicity-induced swelling depended on AQP, confirming an AQP dependence found by Soe et al. (2009). These two forms for swelling are accordingly mechanistically different, as also shown by Cai et al. (2011). NKCC1 operation is Na+,K+-ATPase dependent, because it requires ion gradients established by Na+,K+-ATPase activity (Pedersen et al., 2006). A third mechanism that imports H2O into brain cells is the operation of a Na+/bicarbonate cotransporter, which also depends on ion gradients established by the Na+,K+-ATPase (Østby et al., 2009). This transporter serves as a pH regulator, is not directly activated by K+, and promotes no K+ uptake.

The concept that a Na+,K+-ATPase–mediated K+ uptake occurs in astrocytes of the adult mammalian brain cortex (Hertz, 1965), which is supported by both Jin et al. (2013) and us (Xu et al., 2013), is gaining credibility (Walz, 2000; Somjen et al., 2008; MacAulay and Zeuthen, 2012; Wang et al., 2012a,b). However, K+ exiting from excited neurons eventually must be returned to neurons. Bay and Butt (2012) showed that a Kir4.1-mediated release of K+ from astrocytes allowed subsequent neuronal accumulation, but they provided no explanation as to why neurons could accumulate K+ after its release from astrocytes but not immediately after neuronal release. The reason for this seems to be a difference between the Na+,K+-ATPase expressed in the two cell types. Not only is the maximum activity (Vmax) higher in astrocytes, but the affinity of the extracellular K+-stimulated site (KD) is such that only the astrocytic enzyme is activated by increases in extracellular K+ concentration above its resting level (Grisar et al., 1983; Hajek et al., 1996). Similar increases in extracellular K+ concentration also stimulate glycogenolysis (Hof et al., 1988), an astrocyte-specific event in the brain (Ibrahim, 1975). A K+-induced stimulation of glycogenolysis is also found in cultured astrocytes after, but not before, differentiating treatment with dibutyryl cyclic AMP (Hertz and Code, 1993). Active K+ uptake in astrocytes requires glycogenolysis (DiNuzzo et al., 2012; Xu et al., 2013), because glycogenolytically derived energy is needed for fueling of signaling, allowing entry of Na+ to activate the Na+-sensitive intracellular site of the Na+,K+-ATPase in these nonexcitable cells (Xu et al., 2013). Once extracellular K+ is no longer increased, the astrocytic Na+,K+-ATPase is unable to function, and astrocytically accumulated K+ is released through Kir.1.4 channels perhaps in a gradual and spatially expanded manner, allowing the neuronal Na+,K+-ATPase to accumulate K+. Exit of K+ during the Kir4.1-mediated release might occur together with Cl and water, and reduction of KCl release in Aqp4-deficient hippocampal brain slices might therefore possibly explain the accentuation of shrinkage of the ECS in the mouse hippocampus (Haj-Yasein et al., 2012) during stimulation.

The higher increases in [K+]e are generally limited to seizures, anoxia, and spreading depression (Somjen, 1979; Syková, 1992), where NKCC1 activity leads to massive intra-astrocytic uptake of H2O (“cytosolic brain edema”). Two of the three studies providing the experimental basis for the computations in the Jin paper, Binder et al. (2006) and Padmawar et al. (2005), used such intense stimulation, whereas the third experimental study, Strohschein et al. (2011), did not, creating smaller increases in [K+]e. This study, performed in brain slices, found no changes between wild-type and Aqp4−/− animals at [K+]e above 4 mM; a small decrease in the K+ clearance rate in these mice below 4 mM might be explainable by a reported increase in gap junction coupling, as channel-mediated exit of astrocytically accumulated K+ might counteract normalization of [K+]e. The two studies that used much more intense stimulation, Binder et al. (2006) and Padmawar et al. (2005), found a reduction in K+ uptake in Aqp4−/− mice. This probably reflects the ability of channel-mediated K+ transport to assist transporter-mediated K+ clearance (Somjen et al., 2008; Chever et al., 2010), specifically at these high K+ concentrations, and cooperativity between Kir4.1 and AQP, as reported by Padmawar et al. (2005) and Soe et al. (2009).

In conclusion, except at highly elevated [K+]e, effects of Aqp4 deletion on K+ dynamics seem to be coincidental rather than caused by dependence of astrocytic K+ uptake on AQP4 activity. This is because AQP4 does not interact with the K+ transporters, the Na+,K+-ATPase, and NKCC1, which have the dominant effect on cellular, including astrocytic, K+ uptake. Only at highly elevated [K+]e, where K+ channel function can assist K+ uptake by the transporters, is AQP4 able to enhance the channel-mediated activity.

Edward N. Pugh Jr. served as editor.

Bay
V.
,
Butt
A.M.
.
2012
.
Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels
.
Glia.
60
:
651
660
.
Binder
D.K.
,
Yao
X.
,
Zador
Z.
,
Sick
T.J.
,
Verkman
A.S.
,
Manley
G.T.
.
2006
.
Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels
.
Glia.
53
:
631
636
.
Cai
L.
,
Du
T.
,
Song
D.
,
Li
B.
,
Hertz
L.
,
Peng
L.
.
2011
.
Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling
.
Neuropathology.
31
:
250
264
.
Chever
O.
,
Djukic
B.
,
McCarthy
K.D.
,
Amzica
F.
.
2010
.
Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice
.
J. Neurosci.
30
:
15769
15777
.
D’Ambrosio
R.
,
Gordon
D.S.
,
Winn
H.R.
.
2002
.
Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus
.
J. Neurophysiol.
87
:
87
102
.
Deisz
R.A.
,
Lehmann
T.N.
,
Horn
P.
,
Dehnicke
C.
,
Nitsch
R.
.
2011
.
Components of neuronal chloride transport in rat and human neocortex
.
J. Physiol.
589
:
1317
1347
.
DiNuzzo
M.
,
Mangia
S.
,
Maraviglia
B.
,
Giove
F.
.
2012
.
The role of astrocytic glycogen in supporting the energetics of neuronal activity
.
Neurochem. Res.
37
:
2432
2438
.
Epstein
F.H.
,
Silva
P.
.
1985
.
Na-K-Cl cotransport in chloride-transporting epithelia
.
Ann. NY Acad. Sci.
456
:
187
197
.
Grisar
T.
,
Franck
G.
,
Delgado-Escueta
A.V.
.
1983
.
Glial contribution to seizure: K+ activation of (Na+, K+)-ATPase in bulk isolated glial cells and synaptosomes of epileptogenic cortex
.
Brain Res.
261
:
75
84
.
Haj-Yasein
N.N.
,
Jensen
V.
,
Østby
I.
,
Omholt
S.W.
,
Voipio
J.
,
Kaila
K.
,
Ottersen
O.P.
,
Hvalby
Ø.
,
Nagelhus
E.A.
.
2012
.
Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus
.
Glia.
60
:
867
874
.
Hajek
I.
,
Subbarao
K.V.
,
Hertz
L.
.
1996
.
Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes
.
Neurochem. Int.
28
:
335
342
.
Hamann
S.
,
Herrera-Perez
J.J.
,
Bundgaard
M.
,
Alvarez-Leefmans
F.J.
,
Zeuthen
T.
.
2005
.
Water permeability of Na+-K+-2Cl− cotransporters in mammalian epithelial cells
.
J. Physiol.
568
:
123
135
.
Hamann
S.
,
Herrera-Perez
J.J.
,
Zeuthen
T.
,
Alvarez-Leefmans
F.J.
.
2010
.
Cotransport of water by the Na+-K+-2Cl− cotransporter NKCC1 in mammalian epithelial cells
.
J. Physiol.
588
:
4089
4101
.
Hertz
L.
1965
.
Possible role of neuroglia: a potassium-mediated neuronal—neuroglial—neuronal impulse transmission system
.
Nature.
206
:
1091
1094
.
Hertz
L.
,
Code
W.E.
,
.
1993
.
Calcium channel signalling in astrocytes
.
In
Calcium Antagonists: Pharmacology and Clinical Research
.
Paoletti
R.
,
Godfraind
T.
,
Vankoullen
P.M.
,
editors
.
Kluwer
,
Boston
.
205
213
.
Hof
P.R.
,
Pascale
E.
,
Magistretti
P.J.
.
1988
.
K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex
.
J. Neurosci.
8
:
1922
1928
.
Ibrahim
M.Z.
1975
.
Glycogen and its related enzymes of metabolism in the central nervous system
.
Adv. Anat. Embryol. Cell Biol.
52
:
3
89
.
Iliff
J.J.
,
Wang
M.
,
Liao
Y.
,
Plogg
B.A.
,
Peng
W.
,
Gundersen
G.A.
,
Benveniste
H.
,
Vates
G.E.
,
Deane
R.
,
Goldman
S.A.
et al
.
2012
.
A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β
.
Sci. Transl. Med.
4
:
147ra111
.
Jin
B.J.
,
Zhang
H.
,
Binder
D.K.
,
Verkman
A.S.
.
2013
.
Aquaporin-4–dependent K+ and water transport modeled in brain extracellular space following neuroexcitation
.
J. Gen. Physiol.
141
:
119
132
.
Li
B.
,
Hertz
L.
,
Peng
L.
.
2013
.
Cell-specific mRNA alterations in Na+, K+-ATPase α and β isoforms and FXYD in mice treated chronically with carbamazepine, an anti-bipolar drug
.
Neurochem. Res.
38
:
834
841
.
MacAulay
N.
,
Zeuthen
T.
.
2012
.
Glial K+ clearance and cell swelling: key roles for cotransporters and pumps
.
Neurochem. Res.
37
:
2299
2309
.
Østby
I.
,
Øyehaug
L.
,
Einevoll
G.T.
,
Nagelhus
E.A.
,
Plahte
E.
,
Zeuthen
T.
,
Lloyd
C.M.
,
Ottersen
O.P.
,
Omholt
S.W.
.
2009
.
Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space
.
PLOS Comput. Biol.
5
:
e1000272
.
Padmawar
P.
,
Yao
X.
,
Bloch
O.
,
Manley
G.T.
,
Verkman
A.S.
.
2005
.
K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator
.
Nat. Methods.
2
:
825
827
.
Pedersen
S.F.
,
O’Donnell
M.E.
,
Anderson
S.E.
,
Cala
P.M.
.
2006
.
Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl− cotransport in the heart, brain, and blood
.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
291
:
R1
R25
.
Peng
L.
,
Martin-Vasallo
P.
,
Sweadner
K.J.
.
1997
.
Isoforms of Na,K-ATPase α and β subunits in the rat cerebellum and in granule cell cultures
.
J. Neurosci.
17
:
3488
3502
.
Peng
L.
,
Du
T.
,
Xu
J.
,
Song
D.
,
Hertz
L.
.
2012
.
Adrenergic and V1-ergic agonists/antagonists affecting recovery from brain trauma in the Lund Project act on astrocytes
.
Curr. Signal Transduct. Ther.
7
:
43
55
.
Soe
R.
,
Macaulay
N.
,
Klaerke
D.A.
.
2009
.
Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by small changes in cell volume
.
Neurosci. Lett.
457
:
80
84
.
Solenov
E.
,
Watanabe
H.
,
Manley
G.T.
,
Verkman
A.S.
.
2004
.
Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method
.
Am. J. Physiol. Cell Physiol.
286
:
C426
C432
.
Somjen
G.G.
1979
.
Extracellular potassium in the mammalian central nervous system
.
Annu. Rev. Physiol.
41
:
159
177
.
Somjen
G.G.
,
Kager
H.
,
Wadman
W.J.
.
2008
.
Computer simulations of neuron-glia interactions mediated by ion flux
.
J. Comput. Neurosci.
25
:
349
365
.
Strohschein
S.
,
Hüttmann
K.
,
Gabriel
S.
,
Binder
D.K.
,
Heinemann
U.
,
Steinhäuser
C.
.
2011
.
Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus
.
Glia.
59
:
973
980
.
Syková
E.
,
1992
.
K+ homeostasis in the ECS
.
In
Ionic and Volume Changes in the Microenvironment of Nerve and Receptor Cells in Progress in Sensory Physiology
.
Sykova
E.
,
editor
.
Springer
,
Heidelberg
.
7
26
.
Syková
E.
,
Nicholson
C.
.
2008
.
Diffusion in brain extracellular space
.
Physiol. Rev.
88
:
1277
1340
.
Thomas
R.C.
1972
.
Electrogenic sodium pump in nerve and muscle cells
.
Physiol. Rev.
52
:
563
594
.
Walz
W.
2000
.
Role of astrocytes in the clearance of excess extracellular potassium
.
Neurochem. Int.
36
:
291
300
.
Wang
F.
,
Smith
N.A.
,
Xu
Q.
,
Fujita
T.
,
Baba
A.
,
Matsuda
T.
,
Takano
T.
,
Bekar
L.
,
Nedergaard
M.
.
2012a
.
Astrocytes modulate neural network activity by Ca²+-dependent uptake of extracellular K+
.
Sci. Signal.
5
:
ra26
.
Wang
F.
,
Xu
Q.
,
Wang
W.
,
Takano
T.
,
Nedergaard
M.
.
2012b
.
Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake
.
Proc. Natl. Acad. Sci. USA.
109
:
7911
7916
.
Xiong
Z.Q.
,
Stringer
J.L.
.
2000
.
Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus
.
J. Neurophysiol.
83
:
1443
1451
.
Xu
J.
,
Song
D.
,
Xue
Z.
,
Gu
L.
,
Hertz
L.
,
Peng
L.
.
2013
.
Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain
.
Neurochem. Res.
38
:
472
485
.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).