We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the perifusion of a solution containing a high potassium concentration, was higher in SolC1(−) than in SolD(+) myotubes. The analysis of amplitude and kinetics of the calcium increase in SolC1(−) and in SolD(+) myotubes during the exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) suggested the presence of two mechanisms of SR calcium release: (1) a fast SR calcium release that depended on ryanodine receptors and (2) a slow SR calcium release mediated by IP3 receptors. Detection analyses of mRNAs (reverse transcriptase [RT]-PCR) and proteins (Western blot and immunolocalization) demonstrated the presence of the three known isoforms of IP3 receptors in both SolC1(−) and SolD(+) myotubes. Furthermore, analysis of the kinetics of the rise in calcium revealed that the slow IP3-dependent release may be increased in the SolC1(−) as compared to the SolD(+), suggesting an inhibitory effect of mini-dystrophin in this signaling pathway. Upon incubation with pertussis toxin (PTX), an inhibitory effect similar to that of the IP3R inhibitor (2-APB) was observed on K+-evoked calcium release. This result suggests the involvement of a Gi protein upstream of the IP3 pathway in these stimulation conditions. A hypothetical model is depicted in which both Gi protein and IP3 production could be involved in K+-evoked calcium release as well as a possible interaction with mini-dystrophin. Our findings demonstrate the existence of a potential relationship between mini-dystrophin and SR calcium release as well as a regulatory role of mini-dystrophin on intracellular signaling.
Mini-dystrophin Expression Down-regulates Overactivation of G Protein–mediated IP3 Signaling Pathway in Dystrophin-deficient Muscle Cells
Abbreviations used in this paper: BMD, Becker muscular dystrophy; CICR, calcium-induced calcium release; DAP, dystrophin-associated protein; DHPR, dihydropyridine receptor; DMD, Duchenne muscular dystrophy; HD, half decay; HRP, horseradish peroxidase; IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; IS, increase slope; PTX, pertussis toxin; ROI, region of interest; RT, reverse transcriptase; RYR, ryanodine receptor; TTP, time to peak.
Haouaria Balghi, Stéphane Sebille, Bruno Constantin, Sylvie Patri, Vincent Thoreau, Ludivine Mondin, Elise Mok, Alain Kitzis, Guy Raymond, Christian Cognard; Mini-dystrophin Expression Down-regulates Overactivation of G Protein–mediated IP3 Signaling Pathway in Dystrophin-deficient Muscle Cells . J Gen Physiol 1 February 2006; 127 (2): 171–182. doi: https://doi.org/10.1085/jgp.200509456
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement