Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 decreased the chord conductance at Vm = −100 mV from 34 to 21 pS. The slope conductance measured between −60 and −140 mV was also reduced from 43 to 31 pS. Analysis of chimeric channels suggested that a region between residues 232 and 275 of ROMK2 contributes to this effect. Within this region, the point mutant ROMK2 N240R, in which a single amino acid was exchanged for the corresponding residue of IRK1, reduced the slope conductance to 30 pS and the chord conductance to 22 pS, mimicking the effects of replacing the entire COOH terminus. This mutant had gating and rectification properties indistinguishable from those of the wild-type, suggesting that the structure of the protein was not grossly altered. The N240R mutation did not affect block of the channel by Ba2+, suggesting that the selectivity filter was not strongly affected by the mutation, nor did it change the sensitivity to intracellular pH. To test whether the decrease in conductance was independent of the selectivity filter we made the same mutation in the background of mutations in the pore region of the channel that increased single-channel conductance. The effects were similar to those predicted for two independent resistors arranged in series. The mutation increased conductance ratio for Tl+:K+, accounting for previous observations that the COOH terminus contributed to ion selectivity. Mapping the location onto the crystal structure of the cytoplasmic parts of GIRK1 indicated that position 240 lines the inner wall of this pore and affects the net charge on this surface. This provides a possible structural basis for the observed changes in conductance, and suggests that this element of the channel protein forms a rate-limiting barrier for K+ transport.
Skip Nav Destination
Article navigation
1 December 2004
Article Contents
Article|
November 29 2004
Carboxy-terminal Determinants of Conductance in Inward-rectifier K Channels
Yu-Yang Zhang,
Yu-Yang Zhang
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Search for other works by this author on:
Janice L. Robertson,
Janice L. Robertson
2Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Search for other works by this author on:
Daniel A. Gray,
Daniel A. Gray
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Search for other works by this author on:
Lawrence G. Palmer
Lawrence G. Palmer
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Search for other works by this author on:
Yu-Yang Zhang
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Janice L. Robertson
2Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Daniel A. Gray
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Lawrence G. Palmer
1Department of Physiology and Biophysics, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021
Address correspondence to Lawrence G. Palmer, Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021. Fax: (212) 746-8690; email: [email protected]
Received:
August 11 2004
Accepted:
October 20 2004
Online ISSN: 1540-7748
Print ISSN: 0022-1295
The Rockefeller University Press
2004
J Gen Physiol (2004) 124 (6): 729–739.
Article history
Received:
August 11 2004
Accepted:
October 20 2004
Citation
Yu-Yang Zhang, Janice L. Robertson, Daniel A. Gray, Lawrence G. Palmer; Carboxy-terminal Determinants of Conductance in Inward-rectifier K Channels . J Gen Physiol 1 December 2004; 124 (6): 729–739. doi: https://doi.org/10.1085/jgp.200409166
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Regulation of Kir Channels by Intracellular pH and Extracellular K+ : Mechanisms of Coupling
J Gen Physiol (March,2004)
Email alerts
Advertisement