Voltage-gated Cl channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I and related anions. Extracellular and intracellular I exert blocking actions on hClC-1 currents that are both concentration and voltage dependent. Similar actions were observed for a variety of other halide (Br) and polyatomic (SCN, NO3, CH3SO3) anions. In addition, I block is accompanied by gating alterations that differ depending on which side of the membrane the blocker is applied. External I causes a shift in the voltage-dependent probability that channels exist in three definable kinetic states (fast deactivating, slow deactivating, nondeactivating), while internal I slows deactivation. These different effects on gating properties can be used to distinguish two functional ion binding sites within the hClC-1 pore. We determined KD values for I block in three distinct kinetic states and found that binding of I to hClC-1 is modulated by the gating state of the channel. Furthermore, estimates of electrical distance for I binding suggest that conformational changes affecting the two ion binding sites occur during gating transitions. These results have implications for understanding mechanisms of ion selectivity in hClC-1, and for defining the intimate relationship between gating and permeation in ClC channels.

You do not currently have access to this content.