When living cells of Nitella are first exposed to (1) phosphate buffer mixture, or (2) phosphoric acid, or (3) hydrochloric acid, or (4) sodium chloride, or (5) sodium borate, and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, the rate of penetration of the dye into the vacuole is decreased as compared with the rate in the case of cells transferred directly from tap water to the same dye solution.

When cells exposed to any one of these solutions are placed in the dye solution made up with phosphate buffer solution at pH 7.85, the rate of penetration of dye into the vacuole is the same as the rate in the case of cells transferred from the tap water to the same dye solution.

It is probable that this removal of the inhibiting effect is due primarily to the presence of certain concentration of sodium and potassium ions in the phosphate buffer solution. If a sufficient concentration of sodium ions is added to the dye made up with a borate buffer mixture the inhibiting effect is removed just as it is in the case of the dye made up with the phosphate buffer mixture.

The inhibiting effect of some of these substances is found to be removed by the dye containing a sufficient concentration of bivalent cations, or by washing the cells with salts of bivalent cations.

The inhibiting effect and its removal are discussed from a theoretical standpoint.

This content is only available as a PDF.