In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five-fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage-gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone.
Skip Nav Destination
Article navigation
1 November 1996
Article|
November 01 1996
Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes.
H Xu,
H Xu
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
J E Dixon,
J E Dixon
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
D M Barry,
D M Barry
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
J S Trimmer,
J S Trimmer
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
J P Merlie,
J P Merlie
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
D McKinnon,
D McKinnon
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
J M Nerbonne
J M Nerbonne
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Search for other works by this author on:
H Xu
,
J E Dixon
,
D M Barry
,
J S Trimmer
,
J P Merlie
,
D McKinnon
,
J M Nerbonne
Department of Molecular Biology and Pharmacology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1996) 108 (5): 405–419.
Citation
H Xu, J E Dixon, D M Barry, J S Trimmer, J P Merlie, D McKinnon, J M Nerbonne; Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes.. J Gen Physiol 1 November 1996; 108 (5): 405–419. doi: https://doi.org/10.1085/jgp.108.5.405
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Distinct Transient Outward Potassium Current (Ito) Phenotypes and Distribution of Fast-inactivating Potassium Channel Alpha Subunits in Ferret Left Ventricular Myocytes
J Gen Physiol (April,1999)
Regulation of voltage-gated potassium channels by PI(4,5)P2
J Gen Physiol (July,2012)
NH2-terminal Inactivation Peptide Binding to C-type–inactivated Kv Channels
J Gen Physiol (April,2004)
Email alerts
Advertisement