To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).
Skip Nav Destination
Article navigation
1 October 1992
Article|
October 01 1992
Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications.
D S Duch,
D S Duch
Department of Anesthesiology, Cornell University Medical College, New York 10021.
Search for other works by this author on:
A Hernandez,
A Hernandez
Department of Anesthesiology, Cornell University Medical College, New York 10021.
Search for other works by this author on:
S R Levinson,
S R Levinson
Department of Anesthesiology, Cornell University Medical College, New York 10021.
Search for other works by this author on:
B W Urban
B W Urban
Department of Anesthesiology, Cornell University Medical College, New York 10021.
Search for other works by this author on:
D S Duch
,
A Hernandez
,
S R Levinson
,
B W Urban
Department of Anesthesiology, Cornell University Medical College, New York 10021.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1992) 100 (4): 623–645.
Citation
D S Duch, A Hernandez, S R Levinson, B W Urban; Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications.. J Gen Physiol 1 October 1992; 100 (4): 623–645. doi: https://doi.org/10.1085/jgp.100.4.623
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Veratridine modification of the purified sodium channel alpha-polypeptide from eel electroplax.
J Gen Physiol (November,1989)
Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers.
J Gen Physiol (March,1976)
Modification of K conductance of the squid axon membrane by SITS.
J Gen Physiol (October,1986)
Email alerts
Advertisement