Two morphologically distinct types of horizontal cell have been identified in the all-rod skate retina by light- and electron-microscopy as well as after isolation by enzymatic dissociation. The external horizontal cell is more distally positioned in the retina and has a much larger cell body than does the internal horizontal cell. However, both external and internal horizontal cells extend processes to the photoreceptor terminals where they end as lateral elements adjacent to the synaptic ribbons within the terminal invaginations. Whole-cell voltage-clamp studies on isolated cells similar in appearance to those seen in situ showed that both types displayed five separate voltage-sensitive conductances: a TTX-sensitive sodium conductance, a calcium current, and three potassium-mediated conductances (an anomalous rectifier, a transient outward current resembling an A current, and a delayed rectifier). There was, however, a striking difference between external and internal horizontal cells in the magnitude of the current carried by the anomalous rectifier. Even after compensating for differences in the surface areas of the two cell types, the sustained inward current elicited by hyperpolarizing voltage steps was a significantly greater component of the current profile of external horizontal cells. A difference between external and internal horizontal cells was seen also in the magnitudes of their TEA-sensitive currents; larger currents were usually obtained in recordings from internal horizontal cells. However, the currents through these K+ channels were quite small, the TEA block was often judged to be incomplete, and except for depolarizing potentials greater than or equal to +20 mV (i.e., outside the normal operating range of horizontal cells), this current did not provide a reliable indicator of cell type. The fact that two classes of horizontal cell can be distinguished by their electrophysiological responses, as well as by their morphological appearance and spatial distribution in the retina, suggests that they may play different roles in the processing of visual information within the retina.
Skip Nav Destination
Article navigation
1 January 1990
Article|
January 01 1990
Structural and functional properties of two types of horizontal cell in the skate retina.
R P Malchow,
R P Malchow
Department of Ophthalmology, University of Illinois College of Medicine, Illinois 60612.
Search for other works by this author on:
H H Qian,
H H Qian
Department of Ophthalmology, University of Illinois College of Medicine, Illinois 60612.
Search for other works by this author on:
H Ripps,
H Ripps
Department of Ophthalmology, University of Illinois College of Medicine, Illinois 60612.
Search for other works by this author on:
J E Dowling
J E Dowling
Department of Ophthalmology, University of Illinois College of Medicine, Illinois 60612.
Search for other works by this author on:
R P Malchow
,
H H Qian
,
H Ripps
,
J E Dowling
Department of Ophthalmology, University of Illinois College of Medicine, Illinois 60612.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1990) 95 (1): 177–198.
Citation
R P Malchow, H H Qian, H Ripps, J E Dowling; Structural and functional properties of two types of horizontal cell in the skate retina.. J Gen Physiol 1 January 1990; 95 (1): 177–198. doi: https://doi.org/10.1085/jgp.95.1.177
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Receptive field properties of rod-driven horizontal cells in the skate retina.
J Gen Physiol (September,1992)
Dynamics of skate horizontal cells.
J Gen Physiol (December,1988)
A novel action of quinine and quinidine on the membrane conductance of neurons from the vertebrate retina.
J Gen Physiol (December,1994)
Email alerts
Advertisement