The ion transport mechanism that regulates intracellular pH (pHi) in giant barnacle muscle fibers was studied by measuring pHi and unidirectional Na+ fluxes in internally dialyzed fibers. The overall process normally results in a net acid extrusion from the cell, presumably by a membrane transport mechanism that exchanges external Na+ and HCO-3 for internal Cl- and possibly H+. However, we found that net transport can be reversed either by lowering [HCO-3]o and pHo or by reducing [Na+]o. This reversal (acid uptake) required external Cl-, was stimulated by raising [Na+]i, and was blocked by SITS. When the transporter was operating in the net forward direction (acid extrusion), we found a unidirectional Na+ influx of approximately 60 pmol . cm-2 . s-1, which required external HCO-3 and internal Cl- and was stimulated by cyclic AMP and blocked by SITS or DIDS. These properties of the Na+ influx are all shared with the net acid extrusion process. We also found that under conditions of net forward transport, the pHi-regulating system mediated a unidirectional Na+ efflux, which was significantly smaller than the simultaneous Na+ influx. These data are consistent with a reversible transport mechanism which, even when operating in the net forward direction, mediates a small amount of reversed transport. We also found that the ouabain-sensitive Na+ efflux was sharply inhibited by acidic pHi, being totally absent at pHi values below approximately 6.8.
Skip Nav Destination
Article navigation
1 July 1983
Article|
July 01 1983
Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation.
J M Russell
,
W F Boron
,
M S Brodwick
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1983) 82 (1): 47–78.
Citation
J M Russell, W F Boron, M S Brodwick; Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation.. J Gen Physiol 1 July 1983; 82 (1): 47–78. doi: https://doi.org/10.1085/jgp.82.1.47
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
The interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers.
J Gen Physiol (April,1988)
Cyclic AMP-stimulated chloride fluxes in dialyzed barnacle muscle fibers.
J Gen Physiol (November,1981)
Properties of chloride transport in barnacle muscle fibers.
J Gen Physiol (March,1979)
Email alerts
Advertisement