The voltage dependence of the voltage clamp responses of myelinated nerve fibers depends on the concentration of divalent cations and of hydrogen ions in the bathing medium. In general, increases of the [Ca], [Ni], or [H] increase the depolarization needed to elicit a given response of the nerve. An e-fold increase of the [Ca] produces the following shifts of the voltage dependence of the parameters in the Hodgkin-Huxley model: m∞, 8.7 mv; h∞, 6.5 mv; τn, 0.0 mv. The same increase of the [H], if done below pH 5.5, produces the following shifts: m∞, 13.5 mv; h∞, 13.5 mv; τn, 13.5 mv; and if done above pH 5.5: m∞, 1.3 mv; h∞, 1.3 mv; τn, 4.0 mv. The voltage shifts are proportional to the logarithm of the concentration of the divalent ions and of the hydrogen ion. The observed voltage shifts are interpreted as evidence for negative fixed charges near the sodium and potassium channels. The charged groups are assumed to comprise several types, of varying affinity for divalent and hydrogen ions. The charges near the sodium channels differ from those near the potassium channels. As the pH is lowered below pH 6, the maximum sodium conductance decreases quickly and reversibly in a manner that suggests that the protonation of an acidic group with a pKa of 5.2 blocks individual sodium channels.
Skip Nav Destination
Article navigation
1 February 1968
Article|
February 01 1968
Charges and Potentials at the Nerve Surface : Divalent ions and pH
Bertil Hille
Bertil Hille
From The Rockefeller University, New York 10021
Search for other works by this author on:
Bertil Hille
From The Rockefeller University, New York 10021
Received:
August 07 1967
Online ISSN: 1540-7748
Print ISSN: 0022-1295
Copyright © 1968 by The Rockefeller University Press
1968
J Gen Physiol (1968) 51 (2): 221–236.
Article history
Received:
August 07 1967
Citation
Bertil Hille; Charges and Potentials at the Nerve Surface : Divalent ions and pH . J Gen Physiol 1 February 1968; 51 (2): 221–236. doi: https://doi.org/10.1085/jgp.51.2.221
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
