The effective thickness of the unstirred fluid layer (USL) adjacent to an epithelial barrier can be estimated from the time course for the accumulation or depletion of a solute at the membrane surface. In 1985 we reported an unstirred layer thickness of approximately 70 microns for Necturus gallbladder epithelium. In our earlier studies the delay caused by noninstantaneous bulk solution mixing was not taken into account and thus the USL thickness was systematically overestimated. In the present studies we describe an analysis of the time course of solute arrival at the membrane surface that takes into account noninstantaneous bulk solution mixing. We also describe a simple technique to monitor the accumulation or depletion of a solute at the membrane surface. The time course for the change in the concentration of either tetramethylammonium (TMA+) or tetrabutylammonium (TBA+) upon elevation of bulk solution concentration is sensed at the membrane surface with an ion-sensitive microelectrode. Because of the high selectivity of the ion-sensitive resin for TMA+ or TBA+ over other monovalent cations in the solution (Na+ and K+), a low concentration (1-2 mM) of the probe can be used. By measuring the time course of the arrival of first one probe and then the other, under identical superfusion conditions, sufficient information is obtained to eliminate multiple fits to the data, obtained when only one probe is used. Neglecting bulk solution mixing caused an error greater than 50% in estimated apparent USL thickness. The effective thickness of the USL depends critically upon chamber geometry, flow rate, and the position of superfusion and suction pipettes. Under our experimental conditions the effective USL at the mucosal surface of Necturus gallbladder epithelium was approximately 40 microns.
Skip Nav Destination
Article navigation
1 April 1989
Article|
April 01 1989
Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium.
C U Cotton,
C U Cotton
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Search for other works by this author on:
L Reuss
L Reuss
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Search for other works by this author on:
C U Cotton
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
L Reuss
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1989) 93 (4): 631–647.
Citation
C U Cotton, L Reuss; Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium.. J Gen Physiol 1 April 1989; 93 (4): 631–647. doi: https://doi.org/10.1085/jgp.93.4.631
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Gallbladder epithelial cell hydraulic water permeability and volume regulation.
J Gen Physiol (March,1982)
Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium.
J Gen Physiol (July,1980)
Blockage of gallbladder tight junction cation-selective channels by 2,4,6-triaminopyrimidinium (TAP).
J Gen Physiol (July,1975)
Email alerts
Advertisement