The loose patch voltage clamp has been used to map Na current density along the length of snake and rat skeletal muscle fibers. Na currents have been recorded from (a) endplate membrane exposed by removal of the nerve terminal, (b) membrane near the endplate, (c) extrajunctional membrane far from both the endplate and the tendon, and (d) membrane near the tendon. Na current densities recorded directly on the endplate were extremely high, exceeding 400 mA/cm2 in some patches. The membrane adjacent to the endplate has a current density about fivefold lower than that of the endplate, but about fivefold higher than the membrane 100-200 micron from the endplate. Small local variations in Na current density are recorded in extrajunctional membrane. A sharp decrease in Na current density occurs over the last few hundred micrometers from the tendon. We tested the ability of tetrodotoxin to block Na current in regions close to and far from the endplate and found no evidence for toxin-resistant channels in either region. There was also no obvious difference in the kinetics of Na current in the two regions. On the basis of the Na current densities measured with the loose patch clamp, we conclude that Na channels are abundant in the endplate and near-endplate membrane and are sparse close to the tendon. The current density at the endplate is two to three orders of magnitude higher than at the tendon.
Skip Nav Destination
Article navigation
1 June 1986
Article|
June 01 1986
Na channel distribution in vertebrate skeletal muscle.
J H Caldwell
,
D T Campbell
,
K G Beam
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1986) 87 (6): 907–932.
Citation
J H Caldwell, D T Campbell, K G Beam; Na channel distribution in vertebrate skeletal muscle.. J Gen Physiol 1 June 1986; 87 (6): 907–932. doi: https://doi.org/10.1085/jgp.87.6.907
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Properties of an endogenous steady current in rat muscle.
J Gen Physiol (February,1984)
A quantitative study of potassium channel kinetics in rat skeletal muscle from 1 to 37 degrees C.
J Gen Physiol (April,1983)
Calcium currents in a fast-twitch skeletal muscle of the rat.
J Gen Physiol (October,1983)
Email alerts
Advertisement