The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors.
Skip Nav Destination
Article navigation
1 January 1986
Article|
January 01 1986
Ion channels activated by light in Limulus ventral photoreceptors.
J Bacigalupo
K Chinn
J E Lisman
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1986) 87 (1): 73–89.
Citation
J Bacigalupo, K Chinn, J E Lisman; Ion channels activated by light in Limulus ventral photoreceptors.. J Gen Physiol 1 January 1986; 87 (1): 73–89. doi: https://doi.org/10.1085/jgp.87.1.73
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure.
J Gen Physiol (December,1982)
Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors.
J Gen Physiol (July,1986)
Flash photolysis of caged compounds in Limulus ventral photoreceptors.
J Gen Physiol (September,1992)
Email alerts
Advertisement