The gating kinetics of a Ca2+-activated K+ channel from adult rat muscle plasma membrane are studied in artificial planar bilayers. Analysis of single-channel fluctuations distinguishes two Ca2+- and voltage-dependent processes: (a) short-lived channel closure (less than 1 ms) events appearing in a bursting pattern; (b) opening and closing events ranging from one to several hundred milliseconds in duration. The latter process is studied independently of the first and is denoted as the primary gating mode. At constant voltage, the mean open time of the primary gating mode is a linear function of the [Ca2+], whereas the mean closed time is a linear function of the reciprocal [Ca2+]. In the limits of zero and infinite [Ca2+], the mean open and the mean closed times are, respectively, independent of voltage. These results are predicted by a kinetic scheme consisting of the following reaction steps: (a) binding of Ca2+ to a closed state; (b) channel opening; (c) binding of a second Ca2+ ion. In this scheme, the two Ca2+ binding reactions are voltage dependent, whereas the open-closed transition is voltage independent. The kinetic constant derived for this scheme gives an accurate theoretical fit to the observed equilibrium open-state probability. The results provide evidence for a novel regulatory mechanism for the activity of an ion channel: modulation by voltage of the binding of an agonist molecule, in this case, Ca2+ ion.
Skip Nav Destination
Article navigation
1 October 1983
Article|
October 01 1983
Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions.
E Moczydlowski
R Latorre
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1983) 82 (4): 511–542.
Citation
E Moczydlowski, R Latorre; Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions.. J Gen Physiol 1 October 1983; 82 (4): 511–542. doi: https://doi.org/10.1085/jgp.82.4.511
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane.
J Gen Physiol (March,1980)
Proton modulation of a Ca(2+)-activated K+ channel from rat skeletal muscle incorporated into planar bilayers.
J Gen Physiol (November,1991)
Email alerts
Advertisement