The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+-free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to-one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+-activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW.
Skip Nav Destination
Article navigation
1 July 1981
Article|
July 01 1981
Effects of tetraethylammonium on potassium currents in a molluscan neurons.
A Hermann
A L Gorman
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1981) 78 (1): 87–110.
Citation
A Hermann, A L Gorman; Effects of tetraethylammonium on potassium currents in a molluscan neurons.. J Gen Physiol 1 July 1981; 78 (1): 87–110. doi: https://doi.org/10.1085/jgp.78.1.87
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Voltage-dependent conductances in Limulus ventral photoreceptors.
J Gen Physiol (February,1982)
Aminopyridine block of transient potassium current.
J Gen Physiol (July,1982)
The Regulation of Catch in Molluscan Muscle
J Gen Physiol (July,1967)
Email alerts
Advertisement