1. It has been demonstrated by ion exchange chromatography that the cell nucleus contains mononucleotides of adenine, guanine, cytosine, uracil, together with diphosphopyridine nucleotide, and several uridine diphosphate derivatives; the adenine nucleotides predominating in amount. Nucleotide components in the cell nucleus are in close agreement both quantitatively and qualitatively with those found in the cytoplasm.
2. In calf thymus sucrose nuclei, nucleotide monophosphates can be phosphorylated to the energy-rich triphosphate form without participation of cytoplasmic components. As to the nature of the phosphorylation, it has been shown that there exist certain differences as well as resemblances between nuclei and mitochondria. A distinctive feature of nuclear phosphorylation is that only intranuclear monophosphates seem to be phosphorylated. The process is completely inhibited by cyanide, azide, and dinitrophenol. However, certain reagents which block oxidative phosphorylation of mitochondria, namely dicumarol, Janus green B, methylene blue, and calcium ions, have no effect on phosphorylation within the nucleus.
3. The bulk of mononucleotides is preserved within thymus nuclei after their isolation in sucrose. Nucleotides are surprisingly well retained by nuclei in a sucrose medium whether or not electrolytes are present and in buffers ranging from pH 3 to 10; under all conditions sucrose is required for retention.
4. Dilute acetate in sucrose releases nucleotides from the nucleus below pH 5.1. As to the effective pH of acetate, there is a sharp boundary between pH 5.1 and pH 5.9. At pH 5.9, and above, acetate does not remove nucleotides from the nucleus. The effects of propionate, formate, and monochloroacetate on the nuclei are the same as that of acetate.
5. When nuclei are exposed to a wide variety of conditions a close correlation is found between the retention in the nucleus of nucleotides and of potassium. This suggests that both substances are part of a common complex in the cell nucleus.
6. It has been shown that upon removal of nucleotides and potassium from calf thymus sucrose nuclei by acetate, the ability to incorporate C14-alanine into nuclear protein is greatly impaired.