The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.
Modulation of the Frequency of Spontaneous Sarcoplasmic Reticulum Ca2+ Release Events (Ca2+ Sparks) by Myoplasmic [Mg2+] in Frog Skeletal Muscle
Address correspondence to M.F. Schneider, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene St., Baltimore, MD 21201. Fax: 410-706-8297; E-mail: [email protected]
Portions of this work were previously published in abstract form (Lacampagne, A., M.G. Klein, K. Bagley, and M.F. Schneider. 1997. Biophys. J. 72:A43).
Abbreviations used in this paper: CICR, calcium-induced calcium release; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; TT, transverse tubule.
Alain Lacampagne, Michael G. Klein, Martin F. Schneider; Modulation of the Frequency of Spontaneous Sarcoplasmic Reticulum Ca2+ Release Events (Ca2+ Sparks) by Myoplasmic [Mg2+] in Frog Skeletal Muscle . J Gen Physiol 1 February 1998; 111 (2): 207–224. doi: https://doi.org/10.1085/jgp.111.2.207
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement