The relative permeability sequences of the rat connexin 43 (rCx43) gap junction channel to seven cations and chloride were examined by double whole cell patch clamp recording of single gap junction channel currents in rCx43 transfected neuroblastoma 2A (N2A) cell pairs. The measured maximal single channel slope conductances (γj, in pS) of the junctional current-voltage relationships in 115 mM XCl were RbCl (103) ≥ CsCl (102) > KCl (97) > NaCl (79) ≥ LiCl (78) > TMACl (65) > TEACl (53) and for 115 mM KY were KBr (105) > KCl (97) > Kacetate (77) > Kglutamate (61). The single channel conductance-aqueous mobility relationships for the test cations and anions were linear. However, the predicted minimum anionic and cationic conductances of these plots did not accurately predict the rCx43 channel conductance in 115 mM KCl. Instead, the conductance of the rCx43 channel in 115 mM KCl was accurately predicted from cationic and anionic conductance-mobility plots by applying a mobility scaling factor Dx/Do, which depends upon the relative radii of the permeant ions to an estimated pore radius. Relative permeabilities were determined for all of the monovalent cations and anions tested from asymmetric salt reversal potential measurements and the Goldman-Hodgkin-Katz voltage equation. These experiments estimate the relative chloride to potassium permeability to be 0.13. The relationship between the relative cation permeability and hydrated radius was modeled using the hydrodynamic equation assuming a pore radius of 6.3 ± 0.4 Å. Our data quantitatively demonstrate that the rCx43 gap junction channel is permeable to monovalent atomic and organic cations and anions and the relative permeability sequences are consistent with an Eisenman sequence II or I, respectively. These predictions about the rCx43 channel pore provide a useful basis for future investigations into the structural determinants of the conductance and permeability properties of the connexin channel pore.
Monovalent Ion Selectivity Sequences of the Rat Connexin43 Gap Junction Channel
Address correspondence to Richard D. Veenstra, Ph.D., Department of Pharmacology, SUNY Health Science Center at Syracuse, 750 East Adams Street, Syracuse, NY 13210. Fax: 315-464-8014.
The rat Cx43 transfected N2A cells were courteously provided by Dr. Eric C. Beyer, Washington University School of Medicine, St. Louis, MO 63110. The N2A cell cultures were maintained in Dr. Veenstra's laboratory by Mr. Mark G. Chilton. We wish to thank Dr. Peter R. Brink, Dept. of Physiology and Biophysics, SUNY Health Science Center, Stony Brook, NY 11794 for helpful discussions about the biophysical determinants of ionic permeability within a pore and Dr. Joseph D. Robinson for his helpful comments on the manuscript.
The research reported in this manuscript was provided by National Institute of Health grants HL-42220 to R.D. Veenstra and HL-45466 to E.C. Beyer and R.D. Veenstra. Dr. Richard D. Veenstra is currently an Established Investigator of the American Heart Association.
Abbreviations used in this paper: N2A, neuroblastoma; pdf, probability density function; rCx43, rat connexin43.
Hong-Zhan Wang, Richard D. Veenstra; Monovalent Ion Selectivity Sequences of the Rat Connexin43 Gap Junction Channel . J Gen Physiol 1 April 1997; 109 (4): 491–507. doi: https://doi.org/10.1085/jgp.109.4.491
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement