Bundles of 10-100 fibers were dissected from the extensor digitorum longus muscle of mouse, mounted in an apparatus for optical recording, and stretched to long sarcomere length (> or = 3.6 microns). One fiber within the bundle was microinjected with furaptra, a fluorescent indicator that responds rapidly to changes in myoplasmic free [Ca2+] (delta [Ca2+]). Twitches and brief tetani were initiated by external stimulation. At myoplasmic furaptra concentrations of approximately 0.1 mM, the indicator's fluorescence signal during fiber activity (delta F/F) was well resolved. delta F/F was converted to delta [Ca2+] under the assumption that furaptra's myoplasmic dissociation constant for Ca2+ is 98 microM at 16 degrees C and 109 microM at 28 degrees C. At 16 degrees C, the peak amplitude of delta [Ca2+] during a twitch was 17.8 +/- 0.4 microM (+/-SEM; n = 8) and the half-width of delta [Ca2+] was 4.6 +/- 0.3 ms. At 28 degrees C, the peak and half-width values were 22.1 +/- 1.8 microM and 2.0 +/- 0.1 ms, respectively (n = 4). During a brief high-frequency tetanus, individual peaks of delta [Ca2+] were also well resolved and reached approximately the same amplitude that resulted from a single shock; the initial decays of delta [Ca2+] from peak slowed substantially during the tetanus. For a single twitch at 16 degrees C, the amplitude of delta [Ca2+] in fast-twitch fibers of mouse is not significantly different from that recently measured in fast-twitch fibers of frog (16.5 +/- 0.9 microM; Zhao, M., S. Hollingworth, and S.M. Baylor. 1996. Biophys. J. 70:896-916); in contrast, the half-width of delta [Ca2+] is surprisingly brief in mouse fibers, only about half that measured in frog (9.6 +/- 0.6 ms). The estimated peak rate at which Ca2+ is released from the sarcoplasmic reticulum in response to an action potential is also similar in mouse and frog, 140-150 microM/ms (16 degrees C).

This content is only available as a PDF.
You do not currently have access to this content.