The Ca2+ current activated upon hyperpolarization of Paramecium tetraurelia decays over a period of 150-200 ms during sustained steps under voltage clamp. At membrane potentials between -70 and approximately -100 mV, the time course of this inactivation is described by a single exponential function. Steps negative to approximately -100 mV elicit currents that decay biexponentially, however. Three lines of evidence suggest that this current's inactivation is a function of intracellular Ca2+ concentration rather than membrane potential: (a) Comparing currents with similar amplitudes but elicited at widely differing membrane potentials suggests that their time course of decay is a sole function of inward current magnitude. (b) The extent of current inactivation is correlated with the amount of Ca2+ entering the cell during hyperpolarization. (c) The onset and time course of recovery from inactivation can be hastened significantly by injecting cells with EGTA. We suggest that the decay of this current during hyperpolarization involves a Ca(2+)-dependent pathway.
Skip Nav Destination
Article navigation
1 August 1992
Article|
August 01 1992
Calcium-dependent inactivation of the calcium current activated upon hyperpolarization of Paramecium tetraurelia.
R R Preston,
R R Preston
Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.
Search for other works by this author on:
Y Saimi,
Y Saimi
Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.
Search for other works by this author on:
C Kung
C Kung
Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.
Search for other works by this author on:
R R Preston
,
Y Saimi
,
C Kung
Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1992) 100 (2): 253–268.
Citation
R R Preston, Y Saimi, C Kung; Calcium-dependent inactivation of the calcium current activated upon hyperpolarization of Paramecium tetraurelia.. J Gen Physiol 1 August 1992; 100 (2): 253–268. doi: https://doi.org/10.1085/jgp.100.2.253
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Calcium current activated upon hyperpolarization of Paramecium tetraurelia.
J Gen Physiol (August,1992)
External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor
J Gen Physiol (December,2020)
Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback.
J Gen Physiol (February,1995)
Email alerts
Advertisement