Figure 2.

Fluorescent light microscopy imaging techniques used for intravital microscopy. (A) Confocal microscopy. (top) In confocal microscopy, a fluorophore absorbs a single photon with a wavelength in the UV-visible range of the spectrum (blue arrow). After a vibrational relaxation (orange curved arrow), a photon with a wavelength shifted toward the red is emitted (green arrow). (center) In thick tissue, excitation and emission occur in a relative large volume around the focal plane (F.P.). The off-focus emissions are eliminated through a pinhole, and the signal from the focal plane is detected via a photomultiplier (PMT). Confocal microscopy enables imaging at a maximal depth to 80–100 µm. (bottom) Confocal z stack of the tongue of a mouse expressing the membrane marker m-GFP (green) in the K14-positive basal epithelial layer, and the membrane marker mTomato in the endothelium (red). The xy view shows a maximal projection of 40 z slices acquired every 2.5 µm, whereas the xz view shows a lateral view of the stack. In blue are the nuclei labeled by a systemic injection of Hoechst. Excitation wavelengths: 450 nm, 488 nm, and 562 nm. (B) Two- and three-photon microscopy. (top) In this process a fluorophore absorbs almost simultaneously two or three photons that have half (red arrow) or a third (dark red arrow) of the energy required for its excitation with a single photon. Two- or three-photon excitations typically require near-IR or IR light (from 690 to 1,600 nm). (center) Emission and excitation occur only at the focal plane in a restricted volume (1.5 fl), and for this reason a pinhole is not required. Two- and three-photon microscopy enable imaging routinely at a maximal depth of 300–500 µm. (bottom) Two-photon z stack of an area adjacent to that imaged in A. xy view shows a maximal projection of 70 slices acquired every 5 µm. xz view shows a lateral view of the stack. Excitation wavelength: 840 nm. (C) SHG and THG. (top) In SHG and THG, photons interact with the specimen and combine to form new photons that are emitted with twice or three times their initial energy without any energy loss. (center) These processes have similar features to those described for two- and three-photon microscopy and enable imaging at a maximal depth of 200–400 µm. (bottom) z stack of a rat heart excited by two-photon microscopy (740 nm) to reveal the parenchyma (green), and SHG (930 nm) to reveal collagen fibers (red). xy shows a maximal projection of 20 slices acquired every 5 µm. xz view shows a lateral view of the stack. Bars: (xy views) 40 µm; (xz views) 50 µm.

or Create an Account

Close Modal
Close Modal