Fitted parameters for modeling ktr–pCa relationships in murine- and porcine-permeabilized ventricular myocardium
| . | Murine parameter sets . | Porcine parameter sets . | ||||
|---|---|---|---|---|---|---|
| Parameter | Set 1 | Set 2 | Set 8 | Set 1 | Set 2 | Set 8 |
| K | 0.0070 | 0.0298 | 7.70e-06 | 7.98e-08 | 8.80e-06 | 0.3312 |
| N | 1.6392 | 0.8551 | 0.8654 | 0.6585 | 0.1473 | 0.1315 |
| B | 0.3719 | 0.0362 | 0.0367 | 0.3050 | 0.0137 | 0.0339 |
| C | 0.2497 | 0.5159 | 0.5129 | 0.0957 | 0.7630 | 0.7794 |
| M1 | 0.2584 | 0.3163 | 0.3085 | 0.0629 | 0.1123 | 0.1024 |
| M2 | 0.1199 | 0.1316 | 0.1419 | 0.5365 | 0.1110 | 0.0843 |
| λcyc | 0.6281 | 0.9638 | 0.9633 | 0.6950 | 0.9863 | 0.9661 |
| λcycM2 | 0.1909 | 0.1365 | 0.1473 | 0.7719 | 0.1126 | 0.0873 |
| ktr | 37.2481 | 36.1691 | 36.1584 | 3.3395 | 3.3489 | 3.3452 |
| . | Murine parameter sets . | Porcine parameter sets . | ||||
|---|---|---|---|---|---|---|
| Parameter | Set 1 | Set 2 | Set 8 | Set 1 | Set 2 | Set 8 |
| K | 0.0070 | 0.0298 | 7.70e-06 | 7.98e-08 | 8.80e-06 | 0.3312 |
| N | 1.6392 | 0.8551 | 0.8654 | 0.6585 | 0.1473 | 0.1315 |
| B | 0.3719 | 0.0362 | 0.0367 | 0.3050 | 0.0137 | 0.0339 |
| C | 0.2497 | 0.5159 | 0.5129 | 0.0957 | 0.7630 | 0.7794 |
| M1 | 0.2584 | 0.3163 | 0.3085 | 0.0629 | 0.1123 | 0.1024 |
| M2 | 0.1199 | 0.1316 | 0.1419 | 0.5365 | 0.1110 | 0.0843 |
| λcyc | 0.6281 | 0.9638 | 0.9633 | 0.6950 | 0.9863 | 0.9661 |
| λcycM2 | 0.1909 | 0.1365 | 0.1473 | 0.7719 | 0.1126 | 0.0873 |
| ktr | 37.2481 | 36.1691 | 36.1584 | 3.3395 | 3.3489 | 3.3452 |
Summary of computational results for the model fit of ktr–pCa relationship in murine and porcine myocardium (Table S1). The model is run with parameter sets 1, 2, and 8 with fitted rate constants taken from Table 2. The values of B, C, M1, and M2 are recorded when the solution of the ODE system Eqs. 2, 3, and 4 reach their equilibrium state at maximal activation. K, the activation factor ; N, the crossbridge recruitment factor ; λcyc, the fraction of crossbridges participating in crossbridge cycling ; and λcycM2, the fraction of cycling crossbridges that generate force is computed based on these values. Finally, ktr is computed according to the slack-restretch maneuver described by Patel et al. (2023).