Table 1.
M3, M6, and ML1 observations and parameters
ObservationsParameters needed to model M3 and M6 fully
Relaxed muscle
M3 IM3i   Lattice of head array on myosin Known 
 IM3o   Configuration of heads on myosin assuming random occupancy (7–13a) × 2 
 dM3i ∼143.2 Å Known  Weight of heads on myosin Known 
 dM3o  Known  Radial position of head origin 
M6 IM6i   Weight of contribution from backbone 
 IM6o   Axial position of backbone contribution 
 dM6i ∼7.16 Å Known  Axial size of backbone diffractor 
 dM6o  Known  Bare zone length 
 IML1   Ratio of heads in to heads out 
Interference  Known  Interference distance L Known 
Total observations    Parameters 20–32 
Active muscle     Assume resting parameters if possible  
     Weight of heads Known 
M3 IM3i   Shape of heads on myosin Assume as relaxed 
 IM3o   Population of heads on myosin 
 dM3i ∼145.7 Å Known  Distribution of head array on actin 4b 
 dM3o  Known  Shape of heads on actin (7–13b) × 2 
M6 IM6i   Relative axial position of head array on actin 
 IM6o   Weight of heads on actin 
 dM6i  Known  Axial position of contribution from backbone Assume as relaxed 
 dM6o  Known  Weight of contribution from backbone Assume as relaxed 
 IML1   Population of heads in each attached state 
Interference    Distribution of head array on myosin Assume random 
Total observations    10 Parameters 22–34 
ObservationsParameters needed to model M3 and M6 fully
Relaxed muscle
M3 IM3i   Lattice of head array on myosin Known 
 IM3o   Configuration of heads on myosin assuming random occupancy (7–13a) × 2 
 dM3i ∼143.2 Å Known  Weight of heads on myosin Known 
 dM3o  Known  Radial position of head origin 
M6 IM6i   Weight of contribution from backbone 
 IM6o   Axial position of backbone contribution 
 dM6i ∼7.16 Å Known  Axial size of backbone diffractor 
 dM6o  Known  Bare zone length 
 IML1   Ratio of heads in to heads out 
Interference  Known  Interference distance L Known 
Total observations    Parameters 20–32 
Active muscle     Assume resting parameters if possible  
     Weight of heads Known 
M3 IM3i   Shape of heads on myosin Assume as relaxed 
 IM3o   Population of heads on myosin 
 dM3i ∼145.7 Å Known  Distribution of head array on actin 4b 
 dM3o  Known  Shape of heads on actin (7–13b) × 2 
M6 IM6i   Relative axial position of head array on actin 
 IM6o   Weight of heads on actin 
 dM6i  Known  Axial position of contribution from backbone Assume as relaxed 
 dM6o  Known  Weight of contribution from backbone Assume as relaxed 
 IML1   Population of heads in each attached state 
Interference    Distribution of head array on myosin Assume random 
Total observations    10 Parameters 22–34 
a

Note that, to define head shape, one can assume a particular head structure that needs to be oriented in space with a tilt, a slew, and a rotation around its long axis (three parameters), or one could define it as a lever arm on which there is a mobile head domain: three parameters for the lever arm and three more parameters for the motor domain. In relaxed muscle, each of the two heads needs separate parameters, giving either 6 or 12 parameters, in addition to a parameter defining the separation of the head origins. In active muscle, there will be at least two populations of actin attached heads, each requiring 3 or 6 parameters to define the head shape (6–12 in all).

b

Finding head attachment sites on actin requires two search parameters for the head (axial and azimuthal ranges) and a target area size and offset on the actin (two parameters). The axial distribution of labeled actin sites has a major effect on the values of M3 and M6; there are no heads on actin spaced 145.7 Å apart (I, intensity; d, distance; “known” means that the parameter value has been obtained experimentally). The table assumes that parameters for resting muscle can be determined first, and some of these can be used to help model active muscle.

or Create an Account

Close Modal
Close Modal