Table 1.
Values of material properties used in finite-element simulations
WaterPolystyreneBrain tissue
Density (kg/m31,000a 1,040b 1,007c 
Speed of sound (m/s) 1,500a 2,300b 1,538c 
Attenuation coefficient at 43 MHz (neper/m) 46d 160e 253f 
Heat capacity (J/kg·K) 4,180a 1,200g 3,500h 
Thermal conductivity (W/m·K) 0.6a 0.1g 0.5h 
Young’s modulus (Pa) Not applicable 109i 500j 
Poisson’s ratio Not applicable 0.4i 0.4998k 
Shear viscosity (Pa·s) Not applicable Not applicable 1l 
WaterPolystyreneBrain tissue
Density (kg/m31,000a 1,040b 1,007c 
Speed of sound (m/s) 1,500a 2,300b 1,538c 
Attenuation coefficient at 43 MHz (neper/m) 46d 160e 253f 
Heat capacity (J/kg·K) 4,180a 1,200g 3,500h 
Thermal conductivity (W/m·K) 0.6a 0.1g 0.5h 
Young’s modulus (Pa) Not applicable 109i 500j 
Poisson’s ratio Not applicable 0.4i 0.4998k 
Shear viscosity (Pa·s) Not applicable Not applicable 1l 
a

Standard value.

b

Based on typical acoustic properties of plastics (Selfridge, 1985).

c

Following Menz et al. (2019), based onThijssen et al. (1985).

d

Chemical Rubber Company, 1965.

e

Measured (Prieto et al., 2018)

f

Following Menz et al. (2019), based onde Korte et al. (1994). 

g

Based on typical thermal properties of plastics (Gaur and Wunderlich, 1982; Harper, 2006).

h

Typical values for soft tissues (Hand, 1998).

i

Based on typical mechanical properties of plastics (Harper, 2006).

j

Menz et al. (2019), from measurements of ultrasound-induced displacement in the retina.

k

Tissue assumed to be incompressible for small deformations.

l

See text under Physical mechanism of neuromodulation by high-frequency ultrasound.

or Create an Account

Close Modal
Close Modal