Table 3.

Conductance state in which MTS reaction occurred

Mutant MTS reagent Side of addition Conductance change (%) Number in open state Number in closed state 
T301C EA trans −47 ± 4 (n = 6) 
S305C EA trans −72 ± 3 (n = 21) 25 
L307C EA trans −65 ± 2 (n = 5) 
G309C ET trans −30 ± 3 (n = 4) 
S312C ET cis −78 ± 5 (n = 2) 
“ ET trans −75 ± 4 (n = 3) 
A334C EA trans −38 ± 2 (n = 11) 10 
L338C EA trans −34 ± 3 (n = 10) 15 
V351C EA trans −44 ± 9 (n = 3) 
Mutant MTS reagent Side of addition Conductance change (%) Number in open state Number in closed state 
T301C EA trans −47 ± 4 (n = 6) 
S305C EA trans −72 ± 3 (n = 21) 25 
L307C EA trans −65 ± 2 (n = 5) 
G309C ET trans −30 ± 3 (n = 4) 
S312C ET cis −78 ± 5 (n = 2) 
“ ET trans −75 ± 4 (n = 3) 
A334C EA trans −38 ± 2 (n = 11) 10 
L338C EA trans −34 ± 3 (n = 10) 15 
V351C EA trans −44 ± 9 (n = 3) 

The percent conductance change is given as mean ± SD, with n being the number of single-channel reactions that were used in calculating each value. All results are from experiments with single-channel resolution. Low-pass filtering was 1,000 Hz, and the sample interval was 0.15 ms. The percent conductance change and state of reaction could not always both be determined for a given channel, so the number reacting in the open state plus that in the closed state does not necessarily add up to the n value given for the conductance change. All mutant channels were tested at positive voltage (30–120 mV) with solutions as in Fig. 2.

or Create an Account

Close Modal
Close Modal