Voltage dependent gating and free energies of channel gating for I696X and W697X in the presence of 1 µM capsaicin
| Channel | V0.5a | zga | gmaxa | Pminb | ΔGo(I)c | ΔGo(V)d | ΔGoe |
| mV | nS | kcal/mol | kcal/mol | kcal/mol | |||
| TRPV1 | −22 ± 5 | 0.62 ± 0.08 | 124 ± 7 | 0.32 ± 0.01 | 0.20 ± 0.08 | −0.29 ± 0.06 | 0.23 ± 0.12 |
| I696A | 100 ± 10 | 0.68 ± 0.09 | 60 ± 7 | 0.003 ± 0.06 | 3.26 ± 0.38 | 1.56 ± 0.19 | 4.83 ± 0.79 |
| I696V | 81 ± 6 | 0.62 ± 0.07 | 77 ± 15 | 0.08 ± 0.05 | 1.43 ± 0.13 | 1.16 ± 0.10 | 2.59 ± 0.29 |
| I696L | 78 ± 8 | 0.64 ± 0.09 | 86 ± 10 | 0.08 ± 0.07 | 1.42 ± 0.07 | 1.16 ± 0.18 | 2.28 ± 0.38 |
| I696M | 87 ± 7 | 0.74 ± 0.07 | 79 ± 9 | 0.01 ± 0.11 | 2.69 ± 0.29 | 1.48 ± 0.15 | 4.20 ± 0.48 |
| I696H | 65 ± 9 | 0.65 ± 0.06 | 70 ± 8 | 0.08 ± 0.04 | 1.43 ± 0.18 | 0.97 ± 0.13 | 2.40 ± 0.39 |
| W697Y | 68 ± 7 | 0.90 ± 0.2 | 67 ± 16 | 0.40 ± 0.04 | 0.21 ± 0.05 | 1.34 ± 0.08 | 1.55 ± 0.11 |
| W697H | 69 ± 9 | 0.87 ± 0.3 | 62 ± 12 | 0.25 ± 0.03 | 0.64 ± 0.04 | 1.36 ± 0.11 | 2.00 ± 0.18 |
| W697V | 68 ± 6 | 0.88 ± 0.3 | 30 ± 6 | 0.23 ± 0.05 | 0.70 ± 0.05 | 1.33 ± 0.12 | 2.03 ± 0.20 |
| W697D | 68 ± 4 | 0.71 ± 0.1 | 133 ± 11 | 0.09 ± 0.02 | 1.34 ± 0.10 | 1.25 ± 0.14 | 2.59 ± 0.44 |
| W697N | 73 ± 8 | 0.75 ± 0.2 | 106 ± 13 | 0.03 ± 0.01 | 2.06 ± 0.07 | 1.26 ± 0.13 | 3.32 ± 0.34 |
| Channel | V0.5a | zga | gmaxa | Pminb | ΔGo(I)c | ΔGo(V)d | ΔGoe |
| mV | nS | kcal/mol | kcal/mol | kcal/mol | |||
| TRPV1 | −22 ± 5 | 0.62 ± 0.08 | 124 ± 7 | 0.32 ± 0.01 | 0.20 ± 0.08 | −0.29 ± 0.06 | 0.23 ± 0.12 |
| I696A | 100 ± 10 | 0.68 ± 0.09 | 60 ± 7 | 0.003 ± 0.06 | 3.26 ± 0.38 | 1.56 ± 0.19 | 4.83 ± 0.79 |
| I696V | 81 ± 6 | 0.62 ± 0.07 | 77 ± 15 | 0.08 ± 0.05 | 1.43 ± 0.13 | 1.16 ± 0.10 | 2.59 ± 0.29 |
| I696L | 78 ± 8 | 0.64 ± 0.09 | 86 ± 10 | 0.08 ± 0.07 | 1.42 ± 0.07 | 1.16 ± 0.18 | 2.28 ± 0.38 |
| I696M | 87 ± 7 | 0.74 ± 0.07 | 79 ± 9 | 0.01 ± 0.11 | 2.69 ± 0.29 | 1.48 ± 0.15 | 4.20 ± 0.48 |
| I696H | 65 ± 9 | 0.65 ± 0.06 | 70 ± 8 | 0.08 ± 0.04 | 1.43 ± 0.18 | 0.97 ± 0.13 | 2.40 ± 0.39 |
| W697Y | 68 ± 7 | 0.90 ± 0.2 | 67 ± 16 | 0.40 ± 0.04 | 0.21 ± 0.05 | 1.34 ± 0.08 | 1.55 ± 0.11 |
| W697H | 69 ± 9 | 0.87 ± 0.3 | 62 ± 12 | 0.25 ± 0.03 | 0.64 ± 0.04 | 1.36 ± 0.11 | 2.00 ± 0.18 |
| W697V | 68 ± 6 | 0.88 ± 0.3 | 30 ± 6 | 0.23 ± 0.05 | 0.70 ± 0.05 | 1.33 ± 0.12 | 2.03 ± 0.20 |
| W697D | 68 ± 4 | 0.71 ± 0.1 | 133 ± 11 | 0.09 ± 0.02 | 1.34 ± 0.10 | 1.25 ± 0.14 | 2.59 ± 0.44 |
| W697N | 73 ± 8 | 0.75 ± 0.2 | 106 ± 13 | 0.03 ± 0.01 | 2.06 ± 0.07 | 1.26 ± 0.13 | 3.32 ± 0.34 |
The parameter values obtained from the best fit of the g-V curves to a Boltzmann distribution (Figs. 5 B and 6 A). Free energies were estimated assuming a two-state gating model.
Pmin denotes the normalized conductance at hyperpolarized potentials (gmin/gmax), where gmin has been obtained for the best fit of the g-V curve to a Boltzmann distribution.
The free energy of the voltage-independent component, obtained as –RT ln[(Pmin/(1 − Pmin)].
The free energy of the voltage-dependent component, obtained as zgFV0.5.
The total free energy of the gating process, obtained as ΔGo(I) + ΔGo(V).
Data are given as mean ± SEM, with n ≥ 5.