Table 1.

Kinetic model parameters

Rate constant k0 q Cooperativity factor Value 
 s−1 e   
α 14,910 0.32 xα 1.0 
β 800 −0.91 xβ 0.12 
α4 2,100 0.21 yα 1.0 
β4 1.89 × 106 −2.39 yβ 0.86 
α4o 1,410 0.21   
β4o 170 −2.39   
γ 14,640 1.99   
δ 700 −0.5   
δ4 1,000 −0.5   
δi 1,000 −0.5   
i 24,880 0.01   
r 600 −0.3   
io 22,500 0.01   
ro 1.6 −0.3   
DIV-CN α4 520 0.01   
DIV-CN β4 3,630 −0.01   
DIV-CN α4o 750 0.01   
DIV-CN β4o 1.5 −0.01   
DI/II/III-CN αa 9,550 0.01   
DI/II/III-CN βa 390 −0.01   
Rate constant k0 q Cooperativity factor Value 
 s−1 e   
α 14,910 0.32 xα 1.0 
β 800 −0.91 xβ 0.12 
α4 2,100 0.21 yα 1.0 
β4 1.89 × 106 −2.39 yβ 0.86 
α4o 1,410 0.21   
β4o 170 −2.39   
γ 14,640 1.99   
δ 700 −0.5   
δ4 1,000 −0.5   
δi 1,000 −0.5   
i 24,880 0.01   
r 600 −0.3   
io 22,500 0.01   
ro 1.6 −0.3   
DIV-CN α4 520 0.01   
DIV-CN β4 3,630 −0.01   
DIV-CN α4o 750 0.01   
DIV-CN β4o 1.5 −0.01   
DI/II/III-CN αa 9,550 0.01   
DI/II/III-CN βa 390 −0.01   

The rate constant k0 and voltage-dependent charge q for each unique transition in the model shown in Fig. 6 A, where the final transition rate k at any given voltage is computed as k=k0eqv/kBT, where V is voltage, kB is Boltzmann’s constant, and T is temperature. The factors x and y are constants reflecting the degree of cooperativity in the model between activation of the DI–III voltage sensors and activation of the DIV voltage sensor or binding of the fast inactivation motif, respectively. The charges associated with α4o, β4o, io, and ro were constrained to be identical to those of α4, β4, i, and r, respectively. Similarly, the charges associated with γ4, δ4, γi, and δi were constrained to be identical to those of γ and δ. The rate constants for γ4 and γi were constrained based on microscopic reversibility as γ4=δ4β4xβ3γα4o/β4oδα4xα3 and γi=δiryβ3γ4io/roδ4iyα3, in that order.

a

DI/II/III-CN rates only apply to the middle set of horizontal transitions associated with DI–III voltage sensors.

or Create an Account

Close Modal
Close Modal