Table 8.

Summary of thermodynamic methods applied to Schemes 2–5

Quantity Global analysis Local (Hill) analysis 
Equilibrium curve Q-V (Q = Nq〉) G-V (G = Ng〉) 
Canonical relation q=ΦV G/Gmax=kTlnZηLa 
“Bridge” equation Φ = −kTlnZ ηL (= ΔGL − ΔqLV) = −kTlnLb 
Work function WC[q]=V()V(+)VdqdVdV WH[g]=kT(GGmaxG) 
CPF ratios ZOAZCR = 〈CEμ (ZOZC)V(±) = 〈Cμ , (ZOZC)μ(±) = 〈DVc 
Allosteric energies μΔWC[q] = −4(ΔWC + ΔWE) = −ΔqT μΔVM μΔWH[g]V(±) = −4ΔWC 
  VΔ(WH[g] + ηL)μ(±) = −4ΔWDd 
Quantity Global analysis Local (Hill) analysis 
Equilibrium curve Q-V (Q = Nq〉) G-V (G = Ng〉) 
Canonical relation q=ΦV G/Gmax=kTlnZηLa 
“Bridge” equation Φ = −kTlnZ ηL (= ΔGL − ΔqLV) = −kTlnLb 
Work function WC[q]=V()V(+)VdqdVdV WH[g]=kT(GGmaxG) 
CPF ratios ZOAZCR = 〈CEμ (ZOZC)V(±) = 〈Cμ , (ZOZC)μ(±) = 〈DVc 
Allosteric energies μΔWC[q] = −4(ΔWC + ΔWE) = −ΔqT μΔVM μΔWH[g]V(±) = −4ΔWC 
  VΔ(WH[g] + ηL)μ(±) = −4ΔWDd 

Some of the local equations for Scheme 5 differ from those of the other schemes as a result of the tetrameric pore structure. The following equations become relevant at extreme voltages, where Scheme 5 deviates from Scheme 4 (Fig. 12, C and D):

a

Canonical relation: G/Gmax=kTlnZηP.

b

“Bridge” equation: ηP (= ηL/4) = −kTlnP.

c

ZP4ZZP=4x1BZC3ZO+2(x2t+2x2cB1)B2ZC2ZO2P+4x3B1B2B3ZCZO3P2+ZO4P3ZC4+4(1x1)ZC3ZOBP+2[(1x2t)+2(1x2c)B1]B2ZC2ZO2P2+4(1x3)B1B2ZCZO3B3P3.

d

Allosteric energies: μΔWH[g]V(±) = −ΔWC and VΔ(WH[g] + ηP)μ(±) = −(ΔWD + ΔWB3 + ΔWB4) + kTln[16x1(1−x3)].

or Create an Account

Close Modal
Close Modal