Table 1.

Model equations

Equation type Equation Equation number 
Membrane potential equation   
Membrane potential ψ = (RT/F) ln[(α + [K+]e)/(β +[K+]a)] 
Flux equations   
Potassium flux JKa = PK(ψF/RT)([K+]a − [K+]eexp(−ψF/RT))/(1 − exp(-ψF/RT)) − JKapump 
Potassium pump flux JKapump = 2JKapump(0) [1 + [K+]e(0)/(Δ[K+] − Δ[K+](0) − 2[K+]e(0))] 
Water flux JVa = PfvWe − Φa
Differential equations for volume and concentration   
ECS volume d(de)/dt = JVa 
Astrocyte volume d(da)/dt = −JVa 
ECS [K+d[K+]e/dt + (Jva/de)[K+] = JKa/de 
Astrocyte [K+d[K+]a/dt − (Jva/da)[K+] = −JKa/da 
Integral equations for osmolarity   
ECS osmolarity Φe = Φe(0)/de + 2(∫JKadt)/de 
Astrocyte osmolarity Φa = Φa(0)/da-2(∫JKadt)/da 10 
Non-K+ osmolarity [non-K+]a = Φa(t + Δt) − 2[K+]a 11 
Diffusion equations   
K+ diffusion ∂[K+]/∂t = Da2[K+]/∂x2 12 
Non-K+ diffusion ∂[non-K+]/∂t = Da2[non-K+]/∂x2 13 
Equation for flux through the moving membrane   
Flux boundary condition ∂[K+]a/∂t = −JKa /δ 14 
Equation type Equation Equation number 
Membrane potential equation   
Membrane potential ψ = (RT/F) ln[(α + [K+]e)/(β +[K+]a)] 
Flux equations   
Potassium flux JKa = PK(ψF/RT)([K+]a − [K+]eexp(−ψF/RT))/(1 − exp(-ψF/RT)) − JKapump 
Potassium pump flux JKapump = 2JKapump(0) [1 + [K+]e(0)/(Δ[K+] − Δ[K+](0) − 2[K+]e(0))] 
Water flux JVa = PfvWe − Φa
Differential equations for volume and concentration   
ECS volume d(de)/dt = JVa 
Astrocyte volume d(da)/dt = −JVa 
ECS [K+d[K+]e/dt + (Jva/de)[K+] = JKa/de 
Astrocyte [K+d[K+]a/dt − (Jva/da)[K+] = −JKa/da 
Integral equations for osmolarity   
ECS osmolarity Φe = Φe(0)/de + 2(∫JKadt)/de 
Astrocyte osmolarity Φa = Φa(0)/da-2(∫JKadt)/da 10 
Non-K+ osmolarity [non-K+]a = Φa(t + Δt) − 2[K+]a 11 
Diffusion equations   
K+ diffusion ∂[K+]/∂t = Da2[K+]/∂x2 12 
Non-K+ diffusion ∂[non-K+]/∂t = Da2[non-K+]/∂x2 13 
Equation for flux through the moving membrane   
Flux boundary condition ∂[K+]a/∂t = −JKa /δ 14 

or Create an Account

Close Modal
Close Modal