Table 2.

Boundary conditions for Navier–Stokes and diffusion–convection equations

Navier–Stokes equation Diffusion–convection equation 
(1) Inlet BC U = 2Umean · [1−(s/so)2(1) Inlet BC C = Co 
(lumen flow velocity) Vi = −U·n (constant Co
(2) Symmetric BC n·Vi = 0, t · [−pI + µ(∇Vi + (∇Vi)T] = 0 (2) Symmetric BC n · n = 0, N = −D · ∇C + CVi 
(3) Slip BC n·Vi = 0, t · [−pI + µ(∇Vi + (∇Vi)T] = 0 (3) Insulation BC n · n = 0, N = −D · ∇C + CVi 
(4) Flux BC Vi = -Jv · n, Jv = Jvo(1 − Ci/(Ci + Kd)) (4) Insulation BC n · n = 0, N = −D · ∇C + CVi 
(5) Outlet BC [µ(∇Vi + (∇Vi)T]n = 0, p = p0 (5) Outlet BC n·(−D∇C) = 0 
(no viscous stress) (convective flux) 
Navier–Stokes equation Diffusion–convection equation 
(1) Inlet BC U = 2Umean · [1−(s/so)2(1) Inlet BC C = Co 
(lumen flow velocity) Vi = −U·n (constant Co
(2) Symmetric BC n·Vi = 0, t · [−pI + µ(∇Vi + (∇Vi)T] = 0 (2) Symmetric BC n · n = 0, N = −D · ∇C + CVi 
(3) Slip BC n·Vi = 0, t · [−pI + µ(∇Vi + (∇Vi)T] = 0 (3) Insulation BC n · n = 0, N = −D · ∇C + CVi 
(4) Flux BC Vi = -Jv · n, Jv = Jvo(1 − Ci/(Ci + Kd)) (4) Insulation BC n · n = 0, N = −D · ∇C + CVi 
(5) Outlet BC [µ(∇Vi + (∇Vi)T]n = 0, p = p0 (5) Outlet BC n·(−D∇C) = 0 
(no viscous stress) (convective flux) 

BC, boundary condition; n, surface normal vector; I, unit vector; ∇, gradient operator. Other variables are defined in the main text.

or Create an Account

Close Modal
Close Modal