Table A1.

Summary of nonlinear behavior in variants of the recruitment component RD model

Model variant 
Starting model: dη(t)dt=bη(t)+β0[l(t)l0] ✓ — — — — — — — 
Velocity-dependent recruitment: dη(t)dt=bη(t)+β0[l(t)l0]γdldt — — — — ✓ — — — 
Distortion-dependent recruitment: dη(t)dt=bη(t)+β0[l(t)l0]γf(x)η(t) 
f(x)=x(t)x0x0 ✓ — — — ✓ — — — 
f(x)=abs[x(t)x0x0] ✓ ✓ ✓ — — — — ✓ 
f(x)=[x(t)x0x0]2 ✓ ✓ ✓ ✓ ✓ — ✓ ✓ 
Model variant 
Starting model: dη(t)dt=bη(t)+β0[l(t)l0] ✓ — — — — — — — 
Velocity-dependent recruitment: dη(t)dt=bη(t)+β0[l(t)l0]γdldt — — — — ✓ — — — 
Distortion-dependent recruitment: dη(t)dt=bη(t)+β0[l(t)l0]γf(x)η(t) 
f(x)=x(t)x0x0 ✓ — — — ✓ — — — 
f(x)=abs[x(t)x0x0] ✓ ✓ ✓ — — — — ✓ 
f(x)=[x(t)x0x0]2 ✓ ✓ ✓ ✓ ✓ — ✓ ✓ 

linear F1 versus ΔL relationship and linear FSS versus ΔL relationship; B, difference in shape between large-amplitude quick stretch (rapid fall to a well-defined nadir, followed by a slower rise to an eventual steady state) and large-amplitude quick release (monotonic rise to the eventual steady state); C, difference in pattern among various amplitude quick stretches (trajectories tend to converge at a common nadir) and various amplitude quick releases (trajectories remain apart and distinct); D, difference in shape between small-amplitude (rapid rise to a zenith, followed by a slower fall to eventual steady state) and large-amplitude (monotonic rise to the eventual steady state) quick releases; E, quasi–mirror image responses of small-amplitude quick stretch and quick release; F, curvilinear up in F23 versus ΔL relationship; G, downward trend in T23 versus ΔL relationship, indicating that approach to nadir in response to large ΔL is faster than approach to nadir in response to small ΔL; H, downward trend in T90 versus ΔL relationship.

or Create an Account

Close Modal
Close Modal