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Intronic branchpoint-to-acceptor variants
underlying inborn errors of immunity
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Fernando Sepulveda®®, Tom Le Voyer®>®12@, Aurélie Cobat*>*@, Patrick Nitschké?@®, Lionel Galicier®®, Nicolas Schleinitz*®,

Eric Oksenhendler’?®, Marion Malphettes?®, Bénédicte Neven>*@®, Despina Moshous*>*®, Felipe Suarez*“@®, Claire Fieschi?®,
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Peng Zhang*>*®, and Jérémie Rosain®*>@®

Clinical laboratories searching for pathogenic variants focus mostly on the protein-coding region and corresponding essential
splicing sites. Screening for variants in intronic regions requires dedicated bioinformatics tools and detailed experimental
studies to confirm deleteriousness and pathogenicity. We report intronic variants in a cohort of eight patients from seven
kindreds with unexplained inborn errors of immunity (IEI). Using ad hoc bioinformatics tools, we identified seven kindreds
carrying three branchpoint variants at three loci (BTK, SH2D1A, and WAS) and four AG-gain acceptor site variants at another four
loci (DOCK8, NFKB1, STXBP2, and UNC13D). The variants were located between positions -9 and -49 relative to the wild-type
acceptor site. The deleteriousness and, thus, pathogenicity of these variants were confirmed by exon-captured transcriptome
studies and flow cytometry analyses of protein production or function. Our findings indicate that intronic variants should be
systematically screened and investigated, even in clinical laboratory settings.

Introduction

Genomic medicine is becoming more widely available world-
wide, including for patients with suspected inborn errors of
immunity (IEI) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13). Genetic di-
agnosis is essential for IEI to end the diagnostic odyssey and
make it possible to initiate targeted and non-targeted therapies
or prophylaxis and genetic counseling. However, it has been
estimated that no more than 40% of patients with suspected IEI
receive a genetic diagnosis (9). Clinical laboratories focus their
search for germline pathogenic variants on single-nucleotide
variants (SNV), indels, and structural variants affecting the
coding sequence (CDS) and essential splicing sites (1). The
identification of variants in intronic regions could increase

diagnosis rates for patients with IEI (14, 15, 16). Such variants can
have pathogenic effects via various biological mechanisms. In
particular, variants may disrupt intronic branchpoints (BPs) (17)
or lead to the gain of AG acceptor nucleotides between BP and
canonical splice acceptor sites (18). Intronic BP-to-acceptor
variants are the most proximal, as 88% of BP variants are located
between positions -40 and -15 relative to the canonical acceptor
site (17). Such variants can, therefore, be covered even by high-
throughput sequencing (HTS) approaches capturing exons, such
as panel or whole-exome sequencing. However, screening for
such intronic variants requires dedicated bioinformatics tools,
and several such tools have recently been developed (17, 18,
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19, 20). Additional wet-laboratory studies are also required to
confirm the pathogenicity of the variants identified (14, 21),
which can be challenging in clinical laboratory settings.

Results

Seven unrelated kindreds with IEI

We retrospectively report eight patients in whom we have ul-
timately identified BP and AG-gain variants in genes of IEL. The
patients were initially referred to a clinical laboratory (Study
Center for Primary Immunodeficiencies, Paris, France) based on
their clinical phenotype and laboratory test results during basic
immunological investigations. The eight patients (P1-P8) were
from seven unrelated kindreds (A-G). The case reports are de-
scribed in detail in Table S1 and the supplementary material. All
the patients were living in France. The patients had a mean age
of 29 years (range: 8-58 years); seven patients were male and
one was female. One patient (P5) was born to consanguineous
parents. P1 from kindred A had a history of invasive bacterial
disease and agammaglobulinemia. P2 from kindred B had a
history of Epstein-Barr virus-negative diffuse large B cell lym-
phoma (DLBCL) and hypogammaglobulinemia. P3 from kindred
C had eczema and thrombocytopenia. P4 from kindred D had a
history of bronchiectasis, cutaneous and genital human papil-
lomavirus (HPV) infections, and combined immunodeficiency.
P5 and P6 from kindreds E and F, respectively, had a history of
hemophagocytic lymphohistiocytosis (HLH). P7 and his father,
P8, from kindred G had a history of common variable immu-
nodeficiency (CVID). All patients were screened for IEI by tar-
geted HTS encompassing all genes for which IEI are known (22).
However, an analysis of SNV, indels, and copy-number variants
(CNVs) within CDSs and essential splice sites identified no
candidate pathogenic variants. Due to their clinical and immu-
nological phenotypes, these patients were subsequently and
sporadically referred back to our laboratory.

Identification of BP or AG-gain variants in the seven kindreds

Targeted HTS involves the capturing of exons with a mean
coverage >400X, resulting in partial coverage of the flanking
intronic regions (10). We therefore reanalyzed HTS data of
the patients, searching for candidate intronic variants, given
the high level of suspicion for IEI in all kindreds. Variants
were primarily screened using AGAIN (18), BPHunter (17),
SpliceAl (19), and Pangolin (20) and were also subsequently
analyzed with CADD v1.7 (23), phastCons (24), and phyloP
(25). Interestingly, we identified candidate intronic variants
in all kindreds: BP candidate variants at three loci (BTK,
SH2DIA, and WAS) in kindreds A, B, and C, respectively, and
AG-gain candidate variants at another four loci (DOCKS,
STXBP2, UNCI3D, and NFKBI), in kindreds D, E, F, and G,
respectively (Table 1 and Fig. 1). One variant was present
in the homozygous state (STXBP2), three were hemizygous
(BTK, SH2D1A, and WAS), two were heterozygous in trans
with another heterozygous variant located in the CDS (a
large deletion in DOCKS and a missense variant in UNCI3D),
and one was present in the heterozygous state (NFKBI)
(Table 1 and Fig. 1). In P4, a revertant in DOCKS8 ¢.2971-6C>G

Alioua et al.

Intronic branchpoint-to-acceptor variants

Summary of the features of the intronic variants identified with the various associated scores

Table 1.

phyloP phastCons MAF gnomAD

CADD
v1l7

Absolute SpliceAl max/

Pangolin max
0.43/0.47

AGAIN

score

BPHunter
score

cDNA

gDNA position

Zygosity
(hg38)

Locus

Kindred Type of

v4.1.0

(MANE)

variant

BP

1.63

14.78

NA

4

¢.1567-24del

chrX-101354717-

TG-T

Hemizygous

BTK

5.24

20.2

0.81/0.64

NA

c138-22A>G 4

chrX-124365739-A-
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SH2D1A

BP
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NA
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Kindred A Kindred B Kindred C
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Figure 1. Pedigree of seven French kindreds with IEI. Male and female individuals are represented by squares and circles, respectively. Each generation is
designated by a Roman numeral and each individual by an Arabic numeral. Individuals with immune dysregulation are shown as closed black symbols, and the
index case is indicated by an arrow. Individuals whose genetic status could not be tested are designated “E?”. Mut = mutated.

was also evidenced on genomic DNA extracted from T cell
blasts (T-blasts). This revertant was flanking the germline
intronic variant (c.2971-5C>A) (Fig. S1). All the germline
intronic BP-to-acceptor variants were predicted to be dele-
terious by BPHunter (for BP variants) and AGAIN (for AG-
gain variants), and all had SpliceAl and Pangolin scores
above the cutoff of |0.2| (range = 0.36-0.99) (Table 1). BP
variants were scored higher than AG-gain variants by CADD,
phyloP, and phastCons (Table 1). All the variants identified
were rare and were absent from the Genome Aggregation
Database (gnomAD) v4.1 (26), BRAVO/TOPmed freeze 8 (27),
UK Biobank (28), or All of Us (29) databases. None of these
variants were reported in HGMD professional v2024.4 (30).
Providing further support for their pathogenicity, these
variants segregated with the clinical phenotype in the var-
ious kindreds (Fig. 1). We, thus, identified rare and previ-
ously unknown candidate intronic variants in IEI genes
with recessive or dominant inheritance in all the kindreds
studied.
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Investigating the candidate intronic variants at the mRNA and
protein levels

We then studied the consequences of these variants for RNA
splicing, protein production, and/or function. We used periph-
eral blood cells from the patients or their siblings or cells derived
from blood cells. For RNA splicing, we used the exon-captured
transcriptome of the peripheral blood mononuclear cells
(PBMCs) or T-blasts from the patients or their siblings. We
performed transcriptomic analyses in all kindreds except kin-
dred A. Exon 2 skipping occurred in the T-blasts of P2, who was
hemizygous for the BP variant c.138-22A>G of SH2DIA (Fig. 2 A).
In T-blasts from P3, who was hemizygous for the BP variant
¢.361-20T>G of WAS, we observed a retention of intron 3 that was
predicted to cause a frameshift (Fig. 2 B). In the T-blasts of P4,
exons 13-43 were skipped in the DOCKS8 transcript due to the
large deletion (Fig. S2), and there was a predicted frameshift
insertion of 4 bp (r.2970_2971insACAG, p.V991Gfs*11), probably
due to the c.2971-5C>A variant (Fig. 2 C). There was also normal
remaining skipping of exon 24-25 (Fig. 2 C), likely due to the
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Figure 2. Sashimi view of RNA sequencing in six different kindreds with intronic variants affecting BP sites or AG-gain variants located between the
BP and the acceptor splice site. (A-F) RNA-sequencing data from (A) T-blasts of P2 and two controls (CTL), (B) T-blasts of P3 and two controls (CTL), (C)
T-blasts of P4 and two controls (CTLs), (D) T-blasts of P5 and two controls (CTLs), (E) PBMCs of the mother of P6 and two controls (CTLs), and (F) T-blasts of P7
and two controls (CTLs).
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Figure 3. Intracellular protein expression or functional assays for the index cases from kindreds. (A-F) Flow cytometry study of (A) BTK gated on CD14*
monocytes from fresh whole blood from P1and a control (CTL), (B) SAP in T-blasts from P2 and a CTL, (C) WASp in T-blasts from P3 and a CTL, and (D) DOCK8 in
lymphocytes from the fresh whole-blood cells of P4. (E) Degranulation assay on Vy9*V82* T cells stimulated with 1-Hydroxy-2-methyl-2-butenyl 4-
pyrophosphate lithium salt (HMBPP) in three CTLs and P5. (F) 5'Cr-based cytotoxic activity of Fas-deficient L1210-3 target cells in CD8* T cells from a CTL
or P6. The results are expressed as the percent-specific lysis. The effector/target ratio is shown on the x axis and was calculated from the number of CD8*

T cells, as determined by flow cytometry.

revertant. In the T-blasts of P5, who was homozygous for the AG-
gain variant c.1108-9T>A of STXBP2, a new acceptor splice site
was created at ¢.1108-32, leading to a 32-nt frameshift insertion
(r.1107_1108ins32, p.D370Rfs*6) (Fig. 2 D). In PBMCs from the
mother of P6, who was heterozygous for the c.2448-49C>A
variant of UNCI3D, we observed the creation of a new acceptor
splice site at c.2448-47, leading to a 47-nucleotide insertion with
a frameshift (r.2447_2448ins47, p.L817Hfs*18) (Fig. 2 E). In the
T-blasts of P7, who is heterozygous for the AG-gain variant c.572-
33T>A of NFKBI, a new acceptor splice site was created at c.572-
32, leading to a 32-nucleotide insertion with a frameshift
(r.571_572ins32, p.D191Efs*3) (Fig. 2 F), and exon 8 was skipped,
also leading to a frameshift (Fig. S2 B). Furthermore, we ob-
served impaired production of the following proteins: (1) BTK in
CD14* monocytes from P1 (Fig. 3 A), (2) SAP in T-blasts from P2
(Fig. 3 B), (3) WASp in T-blasts from P3 (Fig. 3 C), and (4) DOCKS
in lymphocytes from P4 (Fig. 3 D). P4 had two peaks of DOCK8
protein levels of different intensities, confirming at protein level
the reversion (31). In addition, degranulation and cytotoxic as-
says revealed an impairment of Vy9*V82* T cells from P5 and
CD8* T cells from P, respectively (Fig. 3, E and F). We therefore
found evidence of either impaired RNA splicing (kindreds B, C,
D, E, F, and G) or impaired protein production (kindreds A, B, C,
and D) or function (kindreds E and F) in all the kindreds tested.
These data support the hypothesis that the intronic variants
identified are pathogenic or likely pathogenic, in accordance
with American College of Medical Genetics and Genomics (ACMG)
criteria (14, 21).

Comparison of predicted and observed impacts on splicing

All BP and AG-gain variants were flagged as possibly pathogenic
by several scores, including SpliceAlI (19) and Pangolin (20), both
of which provide an indication of the likely impact on the RNA.
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We, thus, compared the in silico predictions of these two scores
(Table S2) with the results of a wet-laboratory RNA study for
these variants (Figs. 2, S1, and S2; and Table 2). The observed
impact of the SH2DIA BP variant in T-blasts from P2 (exon
2 skipping) was correctly predicted in silico by SpliceAl and
Pangolin, both of which predicted an impact on the wild-type
(WT) acceptor and donor splice sites of exon 2. For the WAS BP
variant ¢.361-20T>G, both SpliceAl and Pangolin predicted the
loss of the WT acceptor site of exon 4 but no impact on the donor
site, consistent with the observed retention of intron 3 in the
cells of P3. For the AG-gain variant ¢.2971-5C>A in DOCKS, both
SpliceAl and Pangolin predicted the use of an alternative AG
with an in-frame insertion of three nucleotides, but a four-
nucleotide insertion was actually observed in the T-blasts of
P4. Interestingly, the intronic DOCKS revertant (c.2971-6C>G)
was predicted by SpliceAl to annihilate the AG-gain effect of the
€.2971-5C>A. For the AG-gain variant of STXBP2, both SpliceAl
and Pangolin predicted a major weakening of the WT acceptor
site. However, discordant predictions were obtained for alter-
native AG sites. Indeed, SpliceAl predicted the creation of a new
acceptor splice site at position c.1108-7, whereas Pangolin pre-
dicted the creation of a new acceptor splice site at position
¢.1108-32 (Fig. S3), which is what was actually observed in the
T-blasts of P6. For the AG-gain variant of UNCI3D, both SpliceAl
and Pangolin predicted a weakening of the WT acceptor site and
the creation of an acceptor site at c.2448-47, which was con-
firmed by the RNA study on T-blasts from P7. For the AG-gain
variant of NFKBI, both SpliceAl and Pangolin predicted the cre-
ation of an acceptor splice site at ¢.572-31, whereas an acceptor
splice site was actually created at c¢.572-32 in the T blasts of P7.
Overall, the impact on RNA levels was corrected predicted for
three of the six germline variants by SpliceAl and four of the six
variants by Pangolin.
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Table 2. Summary of the consequences of the various intronic variants detected at RNA level

Kindred Cells and individuals Gene and transcript  Variant Consequences at RNA level
studied references investigated
B T-blasts from P2 SH2DIA (NM_0023515)  c.138-22A>G Skipping of exon 2, frameshift predicted
C T-blasts from P3 WAS (NM_000377.3) ¢.361-20T>G Retention of intron 3, frameshift predicted
T-blasts from P4 DOCK8 (NM_001290223. ¢.2971-5C>A Creation of a new acceptor splice site at -4, frameshift predicted
- . *
2) A3-43 (r.2970_2971insACAG, p.V991Gfs*11)
E T-blasts from P5 STXBP2 (NM_006949.4) ¢c.1108-9T>A Creation of a new acceptor splice site at ¢.1108-32, frameshift predicted
(r.1107_1108ins32, p.D370Rfs*6)
F PBMCs from the mother UNCI3D (NM_199242.3) ¢.2448-49C>A Creation of a new acceptor splice site at c.2448-47, frameshift predicted
of P6 (r.2447_2448ins47, p.L817Hfs*18)
G T-blasts from P7 NFKBI (NM_003998.4)  ¢.572-33T>A Creation of a new acceptor splice site at ¢.572-32, frameshift predicted
(r.571_572ins32, p.D191Efs*17)
Skipping of exon 8, frameshift predicted
Discussion Materials and methods

We describe here seven new pathogenic or likely pathogenic
intronic variants either disrupting BP or leading to an AG-gain
between the BP and the canonical acceptor site. The identifica-
tion of these variants provided the various kindreds included
in this study with a genetic diagnosis. BPHunter (17), AGAIN
(18), SpliceAl (19), and Pangolin (20) were powerful tools
after filtering based on the MAF of the variants. Nucleotide
conservation-derived scores, such as phastCons (24) and CADD
(23, 32), can also be helpful, providing high scores for BP var-
iants, but no interpretation of the likely effects of BP variants.
There should be more systematic screening and investigation of
intronic variants. Indeed, such variants can be called even with
lower coverage study, as suggested in silico by a 30X down-
sampling analysis (Table S3). The major advantage of IEI over
other genetic diseases is that most IEI-related genes are ex-
pressed in peripheral blood cells and can be investigated through
RNA studies and protein expression analysis. For genes that are
poorly expressed in peripheral blood cells, or for variants that
are subject to RNA nonsense-mediated decay, treatment with an
RNA inhibitor, such as emetine, can help to increase the number
of reads (33). In clinical laboratory settings, such RNA studies
are essential to confirm that the variant is pathogenic (PVS1
ACMG/AMP criterion) (14, 15). They can also facilitate the in-
vestigation of variants at loci homologous to one or several
pseudogenes (34, 35, 36) or screening for random monoallelic
expression (37). The demonstration of an impairment of
protein production or function by clinical flow cytometry also
provides additional evidence of pathogenicity (38, 39). A blind,
hypothesis-free approach to RNA sequencing would also
be worthwhile but challenging, as it require many in-house
controls and a dedicated bioinformatics pipeline, although such
approaches have been shown to increase diagnostic yield slightly
(40). In addition to the problem of possible variants of genes that
are not expressed, such RNA studies are limited by the cell type
specificity of splicing (35). Our findings demonstrate the im-
portance of the systematic screening and investigation of in-
tronic variants in clinical laboratory settings for patients with
suspected IEI but no genetic diagnosis.
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Case reports

Kindred A

We investigated a 54-year-old patient (P1) with non-consanguineous
Welsh parents living in France. His sister had undergone al-
logeneic bone marrow transplantation for leukemia and is now
being treated for colon cancer. The older brother of P1 was
diagnosed with agammaglobulinemia on the basis of immu-
nological tests during infancy. He was given lifelong intrave-
nous immunoglobulin treatment, which led to the transmission
of hepatitis C virus, leading to cirrhosis and, ultimately, to the
death of this individual. P1 has a history of chronic lung in-
fections, including bronchial superinfections treated by anti-
biotics. Pulmonary function tests were normal. Given the
clinical context and family history, immunological assessments
were performed and showed: (1) hypogammaglobulinemia
(IgG < 0.26 g/liter [normal range, NR: 7-16 g/liter], IgA <
0.05 g/liter [NR: 0.7-4 g/liter], and IgM < 0.06 g/liter [NR: 0.4-
2.3 g/liter]), (2) severe B cell lymphopenia (CD19* = 0/mm?; NR:
169-271/mm?) with normal T and natural killer (NK) cell counts,
and (3) an absence of antibody production (data not shown). P1
received immunoglobulin supplementation, initially intrave-
nously and then subcutaneously. After 15 years of treatment,
his IgG levels are normal on supplementation, and he remains
free of pulmonary infections. Over the last 2 years, P1 has been
complaining of undocumented chronic diarrhea not relieved by
medication. Plans to provide IgA and IgM supplementation are
currently being implemented.

Kindred B

We investigated a single patient (P2) born in 2006 to non-
consanguineous European parents living in France. The pa-
rents of the proband and his two sisters were healthy and had no
remarkable medical history. P2 had a history of recurrent ear,
nose, and throat (ENT) infections during infancy, including
several acute middle ear infections treated by antibiotics that led
to tympanoplasty. He also had two episodes of undocumented
bronchitis and two episodes of scarlet fever. At the age of
16 years, he reported pain in the right tibia of several months’
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duration, with no general signs apart from asthenia and weight
loss. A magnetic resonance imaging scan of the knee was per-
formed, revealing a subperiosteal collection beneath the anterior
tibial periosteum, with irregular intraosseous extension. A bone
biopsy was performed, and pathology examinations led to the
diagnosis of a DLBCL of the germinal center subgroup. Immu-
nological tests were performed. Blood cell counts and immuno-
globulin levels were normal (IgG 7.3 g/liter [NR: 7.0-16.0 g/liter],
IgA 0.82 g/liter [NR: 0.8-3.0 g/liter], and IgM 1.9 g/liter [NR:
0.5-2 g/liter]) (Table S2), but isolated hypogammaglobulinemia
due to IgG4 deficiency (IgGl 4.74 g/liter [NR: 4.9-11.4 g/liter],
IgG2 1.3 g/liter [NR: 1.5-6.4 g/liter], IgG3 0.54 g/liter [NR: 0.2-
1.2 g/liter], and IgG4 0.06 g/liter [NR: 0.08-1.0 g/liter]) was
observed. Immunophenotyping showed that B and NK cell
counts were normal but that the patient had severe T cell lym-
phopenia (CD3*CD4* 245/mm? [NR: 500-1,500/mm?], CD3*CD8*
312/mm? [NR: 200-800/mm?3], CD19* 128/mm?3 [NR: 100-
800/mm?3], and CD16*CD56* 224/mm3 [NR: 50-400/mm?3]).

Kindred C

P3 was born in 2015 to non-consanguineous parents. At the age
of 4 mo, he developed eczema. P3 has a history of upper and
lower respiratory tract infections, and one episode of undocu-
mented arthritis presumed to be bacterial. A computed to-
mography scan revealed bronchiectasis. This patient has also
experienced episodes of epistaxis. Immunological tests revealed
microthrombocytopenia and T cell lymphopenia, with abnor-
mally low percentages of naive T cells. Levels of IgG, IgA, and
IgM, and of toxoid tetanus, were normal. The patient is currently
treated by subcutaneous immunoglobulin supplementation, oral
antibiotic prophylaxis (penicillin G and cotrimoxazole), and
aerosolized salbutamol and steroids.

Kindred D

P4 was born in 1985 to non-consanguineous parents. She has a
history of several cutaneous and gynecologic HPV infections
requiring frequent conizations and, more recently, urothelial
cancer requiring surgery. She has also suffered from bronchi-
ectasis with bronchial superinfections and Pseudomonas aerugi-
nosa colonization. Immunophenotyping showed normal CD8*
T and NK cell counts, but CD4* T and B cell lymphopenia
(CD3*CD4* 206.32/mm? [NR: 460-1,230/mm?3], CD3*CD8*
614.26/mm3 [NR: 190-850/mm?3], CD19* 54.23/mm?3 [NR: 92-
420/mm?3], and CD16*CD56* 203.97/mm?3 [NR: 89-362/mm?3]).
Immunoglobulin levels were subnormal (IgG: 9.7 g/liter [NR:
5.4-13.2 g/liter], IgA 2.7 g/liter [NR: 0.5-2.2 g/liter], and IgM
0.42 g/liter [NR: 0.53-1.62 g/liter]).

Kindred E

P5 was born in 2006 to consanguineous Moroccan parents living
in Morocco. P5 had four brothers. The eldest (L.1) died at the age
of 11 years from Wilson’s disease and a possible undocumented
IEL Another brother died at the age of 5 years from macrophagic
activation syndrome, part of the spectrum of HLH. No genetic
investigation was performed on either of these brothers. The
parents of the proband and his other two brothers are healthy,
and the patient had no other remarkable medical history. Since
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the age of 2 years, P5 has had a history of recurrent ENT in-
fections, including pharyngitis, sore throats, and ear infections
treated with antibiotics on an outpatient basis. At the age of
4 years, splenomegaly with progressive enlargement occurred.
The patient also had three episodes of undocumented left basal
lung disease during a single year that were treated with intra-
venous antibiotics, with a good clinical outcome. P5 is now
suffering from lung disease, which is probably chronic due to
repeated infections. He also has splenic involvement, with an
enlarged spleen, possible hepatic involvement causing portal
hypertension, and anemia due to iron deficiency. Immunological
testing was performed when P5 was referred to our laboratory in
France. Blood cell counts revealed cytopenia, including anemia,
neutropenia, and thrombocytopenia (hemoglobin 6 g/dl [NR:
11.5-15.5 g/dl], neutrophils 0.740 [NR: 2-8 T/liter], and platelets
86 T/liter [NR: 150-450 T/liter]). Immunoglobulin levels were
normal (IgG 11.6 g/liter [NR: 5.4-13.2 g/liter], IgA 0.77 g/liter
[NR: 0.5-2.2 g/liter], and IgM 1.15 g/liter [NR: 0.53-1.62 g/liter])
(Table S2). In addition, immunophenotyping revealed normal T
and NK cell counts but severe B cell lymphopenia (CD3*CD4*
1,183/mm?® [NR: 650-1,500/mm?3], CD3*CD8* 1,332/mm?> [NR:
370-1,100/mm?3], CD19* 35/mm? [NR: 273-860/mm?], and
CD16*CD56" 220/mm? [NR: 100-480/mm?]).

Kindred F

P6 was born in 2003 to non-consanguineous parents. The pa-
rents of the proband and his brother were healthy and had no
remarkable medical history. Since birth, P6 has suffered from
HLH, treated by haploidentical hematopoietic stem cell trans-
plantation with cells from his father at the age of 6 mo. This
procedure was successful and P6 remains in good health to

this day.

Kindred G

P7, born in 2004, has a history of upper respiratory tract in-
fections since infancy. At the age of 5 years, he was hospitalized
for meningitis due to enterovirus. At the age of 20 years, he
displayed pneumonia with septicemia due to Streptococcus
pneumoniae, which was successfully treated with antibiotics.
Immunological testing was performed at the age of 17 years and
revealed low immunoglobulin levels, normal counts of B cells,
abnormally low percentages of switched memory B cells, and an
excess of CD21°% cells. P7 was initially treated with cotrimox-
azole and then with immunoglobulin supplementation from the
age of 20 years onward. P7’s father, P8, born in 1966, also had a
history of CVID with low levels of immunoglobulin.

Patient recruitment

Patients were recruited through a clinical laboratory, which is
the reference laboratory in France for the investigation of IEI. All
patients or their guardians provided written informed consent.
The investigations described here were performed in France, in
accordance with local regulations.

HTS on genomic DNA
HTS was performed for a panel encompassing all known IEI
genes, as previously described (10). The different version of the
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panel encompasses from 300 to 500 genes. DNA was extracted
from EDTA-treated peripheral blood samples, either manually
via the phenol-chloroform method or with a Chemagic Prime
instrument (Perkin Elmer). Genomic DNA libraries were gen-
erated from 2 pug DNA sheared with a Covaris S2 Ultrasonicator,
with the SureSelectXT HS2 Library PrepKit (Agilent), on the
Genomic Platform at the Imagine Institute, Paris. Capture was
performed by hybridization, with 120-bp biotinylated comple-
mentary RNA baits designed with SureSelect SureDesign soft-
ware (Agilent, Homo. sapiens, hgl9, GRCh37, February 2009) to
cover all exons and splicing junctions of the genes implicated in
IEIs. The targeted regions of interest were pulled out with
magnetic streptavidin beads, amplified by PCR with indexing
primers, and sequenced on an Illumina HiSeq2500 HT system
(paired-end sequencing, 2 x 130 bases).

Data were analyzed at the University of Paris Cité/Imagine
Institute Bioinformatics core facilities. Paired-end sequences
were mapped onto the human reference genome (NCBI build37/
hg19 version) with the Burrows-Wheeler aligner. Downstream
processing was performed with the Genome Analysis Toolkit
(GATK), SAMtools (41), and Picard tools, according to docu-
mented best practice (https://software.broadinstitute.org/gatk/
best-practices/). Variant calls were made with the GATK Uni-
fiedGenotyper, based on the 72nd version of the ENSEMBL
database. Genome variants were defined with our in-house
PolyDiag software for NGS, which filters out irrelevant and
common polymorphisms on the basis of frequencies in public
databases: the US National Center for Biotechnology Information
Database of Single-Nucleotide Polymorphisms (42), 1000 Ge-
nomes (43), and the gnomAD (https://gnomad.broadinstitute.
org/) (44, Preprint).

We evaluated CNVs (i.e., large duplications or deletions) for
each individual by determining the relative read count for each
targeted region as the ratio of the read count for that region
divided by the total absolute number of read counts for all the
targeted regions. The ratio of the relative read count for a region
in a given individual to the mean relative read count in other
individuals from the same run gave the estimated CNV for the
region concerned in the individual considered (method adapted
from [45]). Homozygous deletion was suspected when this ratio
was close to zero (no aligned reads). For the detection of mon-
oallelic CNVs, a ratio below 0.7 was considered suggestive of
heterozygous deletion, whereas a ratio above 1.3 was considered
suggestive of heterozygous duplication.

In silico screening of pathogenic variants

Variants were aligned with the hg37 or hg38 reference sequence,
and the following scores were determined: AGAIN (https://
hgidsoft.rockefeller.edu/AGAIN/; https://github.com/casanova-
lab/AGAIN) (18), BPHunter (https://hgidsoft.rockefeller.edu/
BPHunter/; https://github.com/casanova-lab/BPHunter) (17),
SpliceAl (https://spliceailookup.broadinstitute.org/; https://
github.com/Illumina/SpliceAl) (19); and Pangolin (20) (https://
spliceailookup.broadinstitute.org/; https://github.com/tkzeng/
Pangolin), CADD v1.7 (https://cadd.gs.washington.edu/) (23),
phastCons (https://compgen.cshl.edu/phast/) (24), and phy-
loP (https://compgen.cshl.edu/phast/) (25).
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Possible pathogenic intronic variants were primarily screened
using SpliceAl, Pangolin, AGAIN, and BPHunter. Regarding the
cutoffs used, for SpliceAl (and by homology for Pangolin), any
absolute score >0.2 was considered as significantly elevated. This
latter score is the permissive recommended cutoff by ACMG (14,
15). For AGAIN and BPHunter, any score >3 was considered
as significantly elevated. Results for other scores (CADD v1.7,
phastCons, and phyloP) are also provided for descriptive pur-
poses but were not specifically used to screen for variants.

Cell culture

PBMCs were isolated with Ficoll (#CMSMSLO1-0U; Eurobio).
T-blasts were generated from fresh or cryopreserved PBMCs
with ImmunoCult-XF T-Cell Expansion Medium (#10981; Stem-
Cell) supplemented with ImmunoCult Human T Cell Activators
(#10970; StemCell) and interleukin-2.

HTS on complementary DNA

Transcriptomic analysis was performed as previously described
(33, 46). Briefly, RNA was extracted from PBMCs or T-blasts
(NucleoMag RNA kit for magnetic bead-based RNA purifi-
cation, #744350; Macherey-Nagel). DNA was eliminated with
DNasel (#MO03035; Ozyme). RNA was reverse-transcribed to
generate cDNA (PrimeScript RT reagent kit with gDNA Eraser
[Perfect Real Time], #RR047Q; Takara), the second strand was
synthesized (Second-Strand cDNA Synthesis Kit, #A48570;
Thermo Fisher Scientific), and the resulting cDNA was purified
(AMPure XP Reagent, #A63881; Beckman Coulter). We then
sequenced 10-25 ng purified double-stranded cDNA, using the
previously described Agilent panel of IEI genes for capture. Data
were then aligned as previously described (33, 46). Sashimi plots
were drawn with IGV, using splice junctions representing at
least 5% of the mean coverage of the respective gene as the cutoff
for minimal coverage.

Flow cytometry protein expression

Intracellular flow cytometry was performed as follows. For BTK,
whole-blood cells were first subjected to extracellular staining
with anti-CD14-Pacific blue (clone M5E2, #558121; BD) and anti-
CD19 FITC (clone J3-119, #A07768; Beckman) antibodies, per-
meabilized with PhosphoFlow Lyse/fix buffer (#558049; Becton
Dickinson) and Phosphoflow Perm/Wash Buffer I (#557885;
Becton Dickinson), and then incubated with monoclonal anti-
BTK AF647 antibody (clone 53/BTK, #558528; Becton Dick-
inson) or the corresponding AF647 isotype (clone MOPC-173,
#558053; Becton Dickinson). For SAP, T-blasts were first per-
meabilized with a 0.5% BSA 0.5% saponin buffer. They were
then incubated with or without murine monoclonal antibody
(clone 1C9, #HO00004068-MO1; Abnova), with an AlexaFluor488
goat anti-mouse secondary antibody for detection (Thermo
Fisher Scientific). For WASp, T-blasts were permeabilized with
Cytofix/Cytoperm (#554714; Beckton Dickinson) and incubated
with monoclonal anti-WASp PE antibody (clone 5E5, custom
reference; Beckton Dickinson) or the corresponding PE isotype
(normal mouse IgGl, Beckton Dickinson). DOCKS staining was
performed as previously described (31). Briefly, whole-blood cells
were permeabilized with Cytofix/Cytoperm (#554714; Beckton
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Dickinson) and incubated with clone EPRI2511 (#ab175208; Ab-
cam) or left unstained. A goat AF647-coupled secondary antibody
against rabbit IgG (polyclonal, #ab150083; Abcam) was used for
detection.

Degranulation or cytotoxicity assay

Degranulation assays were performed with Vy9*V82* T cells as
previously described (47). Cytotoxic activity was assessed as
previously described (48). Briefly for the cytotoxic activity as-
say, PBMCs from patients, parents, or normal controls were
cultured with phytohemagglutinin (1/700 dilution; Difco) and
IL-2 (20 IU/ml; Valbiotech) for 24 h. We then added IL-2 (40 IU/
ml) and incubated the cells for 6 days. The lysis of Fas-deficient
L1210-3 target cells (10* chromium®-loaded L1210 cells) was
assessed in a standard 4-h release assay in the presence of
monoclonal anti-CD3 antibody (OKT3; Ortoclone). The effector/
target ratio was calculated from the number of CD8* T cells, as
determined by flow cytometry.

Online supplemental material

Fig. S1 shows the evidence for DOCK8 revertant at genomic level
in P4. Fig. S2 shows the additional Sashimi plots for DOCKS (P4)
and NFKB1 (P7). Fig. S3 shows the view for STXBP2 in silico
prediction by SpliceAl and Pangolin. Table SI shows a summary
of the phenotype of the patients and their relatives. Table S2
shows the effects of the seven intronic variants predicted by
SpliceAI and Pangolin. Table S3 shows the alignement and call-
ing of the various variants in a 30X downsampling experiment.

Data availability
All data are either included in the manuscript or available upon
request.
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Supplemental material

DOCK8

€.2971-6C>G (revertant)
€.2971-5C>A (germline variant)

P4 Whole blood DNA

[0-322]

GTTGACATTTCCTCCATCCCCCTCCGCAGGTGAAAAGCATGGECCCAGCACGTACA

Figure S1. IGV view of HTS of P4’s genomic DNA extracted from whole blood (top) or T-blasts (bottom), in DOCKS at the junction of intron 24 and
exon 25.
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Figure S2. Sashimi view of RNA sequencing in P3 and P7. (A and B) Sashimi plots of (A) DOCK8 with the skipping of exons 13-43 in T-blasts from P4 and (B)

NFKBI exon 8 skipping in T-blasts from P7.
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Figure S3.  SpliceAl and Pangolin view from https://spliceailookup.broadinstitute.org/ of AG-gain variant c.1108-9T>A in STXBP2.

Provided online are Table S1, Table S2, and Table S3. Table S1 shows the summary of clinical and basic immunological testing of
index cases from the seven kindreds and their familial history. Table S2 shows the effects of the seven intronic variants predicted by
SpliceAl and Pangolin. Table S3 shows the depth coverage of aligned and called intronic variants in the original and in 30X
downsampling projects.
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