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The systemic effects of 22q11.2 deletion syndrome 
on immunity
Nicolai S.C. van Oers1*� and Kathleen E. Sullivan2*�

22q11.2 deletion syndrome (22q11.2DS) affects about 1/2,150 individuals, causing complex and variably penetrant clinical 
problems. The clinical phenotypes evident at birth can include thymic hypoplasia, hypoparathyroidism, heart defects, and/or 
facial dysmorphism. Neurological issues including behavioral problems such as autism spectrum disorders and schizophrenia 
are evident at later postnatal periods. Thymic hypoplasia affects about 60–70% of patients, leading to T cell lymphopenias of 
varying severity. In rare cases, a congenital athymia occurs, necessitating a thymic implant. This review provides information 
regarding the causes and consequences of 22q11.2DS on thymic functions along with its broader impacts on the immune 
system. The affected immune cells include T, B, and mast cells. Patients with 22q11.2DS have more infectious, autoimmune, 
and allergic complications. Broader systemic changes including increased vascular permeability, a disrupted blood–brain 
barrier, and epigenetic alterations resulting from deletions on chromosome 22q11.2 affect many organ systems that can 
involve immune responses.

Introduction
Overview
22q11.2 deletion syndrome (22q11.2DS, a.k.a. DiGeorge syn
drome) is a multi-syndromic condition consisting of congenital 
malformations arising during embryogenesis along with later 
onset neurological complications (1, 2, 3, 4, 5, 6, 7). The preva
lence of 22q11.2DS is 1/2,150 live births (2). The extent and se
verity of the congenital problems due to 22q11.2DS are highly 
variable and can include thymic hypoplasia, hypoparathyroid
ism, cardiac outgrowth vessel defects, and/or dysmorphic facial 
features (Fig. 1 A) (1, 3, 4, 6, 8, 9, 10, 11, 12). Postnatal issues 
for patients encompass developmental delay, epilepsy, autism 
spectrum disorder, and/or schizophrenia (Fig. 1 A) (13, 14, 15). 
These diverse and broad clinical symptoms result from a com
mon 3 Mb or less frequent, nested 1.5 Mb deletion on chromo
some 22q11.2 (chr. 22q11.2), which arises because of improper 
meiotic recombination (Fig. 1 B) (16, 17). Duplication of chr. 
22q11.2 results in some overlapping phenotypes as the deletions, 
although these are less severe and less penetrant (Table 1) (18). In 
22q11.2DS, a recurrent 3-Mb deletion occurs in ∼85–90% of 
individuals, creating a haploinsufficiency of about 146 genes. 
These comprise 46 coding and the remainder noncoding ele
ments (e.g., microRNAs [miRNAs], long noncoding RNAs 
[lncRNAs], and other small non-coding RNAs [sncRNAs] (Fig. 1 B
and Table 1) (4). Among the 46 coding genes, a haploinsufficiency 

of T-box transcription factor 1 (TBX1) is the principal driver of 
the embryonic malformations. This was confirmed in patients 
carrying just TBX1 variants (loss- and gain-of-function con
sequences), whose clinical presentations can include thymic 
hypoplasia, hypoparathyroidism, aortic arch defects, and/or 
dysmorphic facial characteristics (Table 1) (19, 20). While a 
haplosufficiency of TBX1 drives the congenital problems, the 
remaining coding and noncoding genes in the deleted region 
do influence disease severity (4). The clinical impact on the 
immune system depends primarily on whether the thymus is 
hypoplastic, severely hypoplastic, or aplastic (Table 2). The 
consequent medical care needs for 22q11.2DS patients are 
complex, and costs can exceed one million dollars during an 
individual’s first two decades of life (21, 22, 23, 24, 25, 26, 27). 
In this review, we will address pathophysiologic mechanisms, 
clinical findings, and important questions still outstanding 
regarding 22q11.2DS.

Diagnosis of thymic hypoplasia
Given the multiple congenital problems associated with 
22q11.2DS, early fetal screening is beneficial to identify those 
who may need advanced clinical care at birth. One early screen, 
starting at week 10 of gestation, involves next-generation se
quencing of cell-free DNA obtained from maternal plasma (28). 
Diverse microdeletions, such as 22q11.2DS, can be detected in 
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Figure 1. Clinical phenotypes associated with genes on the frequently deleted segments of chr. 22q11.2. (A) Fetal and postnatal clinical problems 
associated with 22q11.2DS arising from chromosomal deletions on 22q11.2. The red lines depict several of the low copy repeats (LCRs) in the chr. 22q11.2 region 
that result in the 3- and 1.5-Mb deletions. (B) Chromosomal map with several of the genes indicated along with their impact on the immune and neuronal 
systems. The blue and black defines the transcript direction. Note that PRODH and DGCR6 are encoded at the same location and transcribed in opposite di
rections. BioRender was used for components of the image. ILC, Innate lymphoid cells.
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fetal DNA from the plasma (29). This microdeletion screen may 
be recommended if parents are known carriers of 22q11.2DS 
and/or there are suggestive prenatal indicators (30).

Congenital heart abnormalities are the most common birth 
defect in humans, and 60–80% of 22q11.2DS patients have car
diac anomalies (8, 30). Standard of care prenatal ultrasound 
examinations includes fetal heart monitoring to detect cardiac 
anomalies (31). High-resolution 2D fetal echocardiography, often 
undertaken to characterize the cardiac problems, can also reveal 
a small thymus. This is done by measuring the ratio between the 
diameter of the thymus (T) (anteroposterior measure) and the 
intrathoracic (T) mediastinum (11, 32). A normal human fetal 
thymus has a mean T/T ratio of 0.44, while 22q11.2DS fetuses 
have a mean value of 0.25 (11, 32). A reduced fetal T/T ratio is 
suggestive of thymic hypoplasia, which correlates with lower 
T cell counts postnatally (33). Not surprisingly, lower T cell re
ceptor excision circles (TRECs) are also associated with lower 
naı̈ve CD4 T cell counts (34).

A small fraction of 22q11.2DS patients can be picked up 
through newborn screening using a PCR screen that detects 
TRECs (35, 36, 37, 38). TRECs form as T cells rearrange the TCR-α 
locus in the thymus, and these excised DNA circles remain in the 

recent thymic emigrants (39). Low-to-absent TREC values in
dicate low T cells, and 22q11.2DS is one of the more common 
conditions identified in this newborn screen (35, 40, 41). A re
peat low-to-undetectable TREC result suggests an inborn error 
of immunity (IEI) (14, 42, 43). To confirm if a patient has dele
tions on chr. 22q11.2 versus distinct genetic mutations causing 
SCID, a chromosomal microarray analysis, multiplex ligation– 
dependent probe amplification, or alternative copy number 
analysis is required. It is estimated that <1% of patients with 
22q11.2DS are identified through newborn screening (44). This is 
because 60–70% of 22q11.2DS patients have low but sufficient 
naı̈ve T cells, with TREC levels not flagged by newborn screens 
(Table 2). Less than 1% of 22q11.2DS patients have congenital 
athymia, necessitating a thymic implant (referred to as a trans
plant in the UK) (Tables 1 and 2) (14, 25, 40). Congenital athymia 
in 22q11.2DS patients results from thymic stromal cell defects, 
leading to a T−B+NK+ phenotype with an absence or severe re
duction in naı̈ve T cells (14, 40). Patients with thymic aplasia have 
absent TRECs, failing newborn screens for those countries that 
offer newborn screening for SCID. Many studies have provided 
clinical practice guidelines for 22q11.2DS patients (Table 2) (1, 6, 
9, 14, 25, 45).

Table 1. Clinical presentations in 22q11.2DS compared to duplications on 22q11.2 and TBX1 variants

Clinical disorder 22q11.2DS LCRA-D 3-Mb deletion 
22q11.2DS LCRA-B 1.5-Mb deletion

22q11.2DS duplication TBX1 loss or gain of function

Frequency 1/2,150 1/1,600 Rare (∼10–15 families)

Congenital problems: % affected

Thymic hypoplasia 70–80% 1–2%a 20–45%

Thymic aplasia <1% Not reported Not reported

Hypocalcemia 50–65% 2.8% 45%

Cardiac defects 60–85% 4–6% 56%

Craniofacial features 80–90% 12.7% 100%

Speech delay (GERDb) 70–90% 46% 33%

Postnatal concerns: % affected

Immunological

Allergy 60% 25% Unknown

Autoimmunity 5–10% 2.3% Unknown

CD3+ T cell lymphopenia 60–70% 2.6% Unknown

Decreased class switch memory B cells 70% 25% Unknown

Low pneumococcal vaccine responses 39% 0% Unknown

Hypogammaglobulinemia 6% 10–20% Unknown

Neurological

Developmental delay 8–10% 45–50% 30%

Autism spectrum disorder 15–40% 20% 38%c

Schizophrenia 30–35% Protective 38%c

Disrupted blood–brain barrier Unknown Not reported Not reported

aReflects low peripheral T cells.
bGastroesophageal reflux disease.
cListed as combined psychiatric disorders.
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Thymic tissue development in 22q11.2DS
The thymic anlage and inferior parathyroids form within the 
third pharyngeal pouch (third PP) during embryogenesis (weeks 
7–8 of gestation in humans, days embryonic (E) E10.5–E11.5 in 
murine embryos) (46). The thymic hypoplasia/aplasia in the 
22q11.2DS cohort begins at this early development stage. Con
firming this, thymic hypoplasia is already present in murine 
embryos isolated between E11 and E13 from various mouse 
models of 22q11.2DS (47, 48, 49, 50, 51, 52, 53). In such embryos, 
the third PP and third and fourth pharyngeal arch arteries are 
often underdeveloped or absent (47, 48, 49, 50, 51, 52, 53). While 
developmental problems of the third PP explain the thymic and 
parathyroid changes, alterations in the third and fourth pha
ryngeal arches lead to abnormal patterning of the aortic arch, 
along with the carotid and subclavian arteries. This explains the 
outflow track problems in 22q11.2DS patients (8). Murine em
bryos and postnatal mice also exhibit dysphagia, revealing the 
extensive overlapping congenital abnormalities between human 
22q11.2DS and mouse models (52, 54).

The ability of thymic implants (transplants) to reconstitute 
T cell development in 22q11.2DS patients with congenital athy
mia suggests the molecular cause of thymic aplasia is a stromal 
cell problem. This is because the donor thymus is cultured for 
3 weeks prior to implant, with most thymocytes dying (24, 55, 
56). The remaining thymus is primarily composed of stromal 
cells; thymic epithelial cells (TECs), fibroblasts, and the endo
thelial vasculature (57). Implanted into the quadriceps, the do
nor thymus attracts host hematopoietic cells that differentiate 
into thymocytes (24, 25, 55). A candidate stromal cell hypothe
sized as causal to 22q11.2DS phenotypes was the neural crest cell 
(NCC)–derived mesenchymal cell (58, 59). During the formation 
of the thymus, such NCC-derived mesenchymal cells surround 

the single endothelial layer within the third PP (Fig. 2 A) (46, 60). 
The mesenchymal cells induce endothelial cell-to-TEC tran
sitions. Subsequent multicellular interactions between the 
mesenchymal cells, expanding TECs, and early immature 
CD4−CD8− thymocytes create a 3D spongelike meshwork of cells 
unique to the thymus (61, 62, 63). Studies comparing the de
veloping embryonic thymuses from normal and 22q11.2DS mu
rine models established key alterations in the mesenchymal cell 
subsets (64). In the Tbx1neo2/neo2 mouse model (36% normal 
levels of Tbx1), embryos from E12 to E17.5 had a penetrant thy
mic hypoplasia, an interrupted aortic arch, and mispositioned 
parathyroids (49, 65, 66). Single-cell RNA sequencing of normal 
embryonic thymuses from E13 to E13.5 gestational days revealed 
six, five, and four mesenchymal, TEC, and hematopoietic cell 
subsets, respectively, along with one endothelial population (64, 
67, 68). Mesenchymal cells from the hypoplastic thymuses 
(Tbx1neo2/neo2 embryos) had an altered trajectory with pro
nounced expansion of chondrocytes (67). Chondrocytes are 
major producers of collagens and extracellular matrix (ECM) 
proteins, which can increase tissue stiffness, reduce tissue ex
pansion, and impair vascular development (69, 70, 71). Immu
nofluorescence studies confirmed elevated collagens and ECM 
proteins in both murine embryonic thymuses and postnatal 
thymuses from human 22q11.2DS patients (72). Of note, replac
ing the Tbx1neo2/neo2 mesenchymal cells with normal ones in the 
murine embryos restored embryonic thymic tissue growth in 
reaggregate thymic organ culture assays (64). Single-cell RNA 
sequencing confirmed that the murine “22q11.2” thymic me
senchymal subsets had altered transcriptomes and trajectories, 
while TECs had minimal alterations (67, 73). A significant ad
vance was the discovery that administration of either minoxidil 
or PGE2 in the pregnant mouse models of 22q11.2DS normalized 
thymic tissue growth (67). These drugs prevented chondrocyte 
expansion and limited collagen and ECM production. Interest
ingly, while most of the principal transcripts involved in TEC 
functions were normal, several Sox-family transcription factors 
(TFs) were elevated in the developing immature TECs in the 
mouse embryos (72). It is not known how this might influence 
the composition of TEC mimetics and medullary TEC subsets 
that have developed tissue/organ specific identities by upregu
lating lineage defining TFs (74). Single-cell RNA sequencing of 
postnatal human thymuses from 22q11.2DS patients was re
cently reported, further supporting a mesenchymal cause for 
thymic hypoplasia (unpublished data). Comparisons with non- 
22q thymuses revealed that the 22q11.2DS tissues had altered 
biological pathways, with top hits including ECM assembly and 
structure, collagen production, and fibril organization, along 
with vascular and connective tissue development. The human 
22q11.2DS thymuses had diminished medullary regions, with 
more collagen deposition throughout the thymus.

T cell development in 22q11.2DS thymuses
In a normal thymus, T cell development follows an ordered 
progression of immature CD4−CD8− (double negative [DN]) to 
CD4+CD8+ (double positive [DP]) followed by CD4+CD8− and 
CD4−CD8+ single positive (SP) thymocyte subsets (75, 76). 
Comparative analyses of human thymuses from 22q11.2DS 

Table 2. Clinical range of T cell lymphopenias among 22q11.2DS 
patients

Thymic 
hypoplasia (60– 
70%)

More severe 
thymic 
hypoplasia

Congenital 
athymia (<1%)

Normal 
thymus (30– 
35%)

Reduced CD3+ 

T cells (<1,500 
cells/µl)

Low CD3+ T cells 
(>50 and <400 
cells/µl)

Very low CD3+ 

T cells (<50 cells/ 
µl)

CD3+ T cells 
>1,500 cells/ 
µl

Reduced numbers 
of näıve T cells and 
expanded memory 
T cells

Low näıve T cells 
(>50 cells/µl; >5% 
and <50% total 
T cells)

Low näıve T cells 
(<50 cells/µl; <5% 
total T cells)

Higer näıve to 
memory T cell 
ratios 
(infants)

TREC levels are not 
flagged as 
abnormal

Undetectable or 
very low TRECsa

Undetectable or 
very low TRECsa

Normal 
TRECs

Elevated T 
follicular helper 
cells

Possible maternal 
engraftment

Treatment strategies

Monitor and 
possible 
prophylactics

Monitor and 
possible 
prophylactics

Thymic implant 
(transplant)

Not 
applicable

aFlagged by newborn screening and may vary between testing centers.
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(thymic hypoplasia) and non-22q patients have revealed similar 
processes of T cell development (77). However, the overall size 
and cellularity of the thymuses were lower than controls (64, 77, 
78). The percentages of DN, DP, and SP subsets remained simi
lar, implying normal TEC functions (64, 77, 78). An initial report 
suggested that thymic T regulatory cells (Tregs) from 22q11.2DS 
patients had diminished suppressive activities; this was not 
observed in other findings (77, 78). Taken together, the data 
concur that 22q11.2DS leads to a smaller thymus that exhibits 
relatively normal thymopoiesis (53). Recent spatial tran
scriptomic and cellular indexing of transciptomes and epitopes 
(CITE)-Seq have yielded numerous detailed processes governing 
T cell development in the thymus (79). This includes the identifi
cation of more than 50 different cell subsets, including 15 TEC 
mimetics. A thorough comparison of these diverse cell types in 
human 22q11.2DS thymuses will reveal how the mesenchymal cell 
changes influence the other stromal and hematopoietic cell subsets.

The impact of 22q11.2DS on peripheral T cell subsets
The classic finding in 22q11.2DS patients with low T cell numbers 
is a reduction in their naı̈ve CD4 T cells (Table 2) (34, 80). 
Multiple studies have examined the impact of 22q11.2DS on 
specific T cell subsets among these CD4 T cells. There are more 
memory T cells at all ages, with concordant increases among the 
Th1, Th2, and Th17 helper T cell subsets (34). Th17 cells were 
highest in those children who had the lowest TRECs (detected 
at birth). These Th17 cells also had chromatin signatures of 
senescence and inflammation (also documented by flow cy
tometry) (81, 82, 83). It remains unclear as to whether an in
flammatory milieu led to this senescence phenotype (84). Other 
T cell types impacted by 22q11.2DS are less clearly linked to 
thymic hypoplasia. For example, follicular helper T cells (Tfh) 
actually increased in the 22q11.2DS cohort compared to normal 
controls (85). This contrasts with the decreased number of Tregs 
(86, 87), although Treg differences are not consistently observed 

(78, 88). Such T cell findings are difficult to align with just a 
simple thymic hypoplasia and may reflect compromised thymic 
structure or vasculature (72, 77). Immaturity in the structure of 
the thymus has been observed with concomitant decreased 
suppressor function of regulatory T cells, which is not always 
noted (77, 78). This and/or the reduced size of the medullary 
region of the thymus, potentially impacting TEC mimetics, could 
be contributors to increased autoimmune diseases. Increased 
Tfh cells may be both a reflection of autoimmune disease and 
differential gene expression (89, 90).

Clinical features
Most 22q11.2DS patients have reduced numbers of circulating 
T cells relative to age-matched cohorts due to thymic hypoplasia 
(Table 2) (1, 3). Thymic aplasia (congenital athymia) is rare (<1% 
of 22q11.2DS patients). For congenital athymia, cultured thymic 
implants have been performed for decades and, at present, are 
primarily available in the U.S. and Great Britain. Referral to a 
center for thymic implantation is based on laboratory features 
demonstrating low TRECs, low-to-absent naı̈ve T cells, and poor 
T cell mitogen responses (14). For those on the more extreme 
degree of T cell lymphopenia but not eligible for a thymic im
plant (>50 to <400 CD3+ cells/µl), clinical considerations should 
include prophylactic treatments and immunoglobulin therapies 
(14, 40). Unfortunately, there are no therapeutic strategies to 
increase circulating T cell numbers for 22q11.2DS patients with 
persistent T cell lymphopenia. Another important consideration 
is whether the 22q11.2DS patient may have had a partial or total 
thymectomy because of their cardiac surgery (91, 92, 93). T cell 
lymphopenia occurs after thymectomy in all patients (reviewed 
in 94). While thymectomies were not considered a clinical 
problem initially, recent studies have shown that infants/tod
dlers who had their thymuses removed do have long-term 
health complications (92). This includes higher mortality rates 
at younger ages and greater risk scores for both cancer and 

Figure 2. Thymus specification and expansion during embryogenesis in normal and 22q11.2 settings. (A) The thymus and inferior parathyroids are 
formed from the third PP, a temporary evagination of the gut tube during embryogenesis. The tissue is specified as NCC–derived mesenchymal cells sur
rounding the endothelial layer and promoting the 3D thymic structure. (B) The thymus in 22q11.2DS is smaller than normal controls, with increased collagen 
deposition due to an expanded chondrocyte population. There are fewer näıve T cells in 22q11.2DS, with evidence of an expansion of memory cells, including an 
elevated percentage of Tfh. Biorender was used for a portion of the image.
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autoimmunity compared to those whose thymus was retained 
during cardiac surgery (91, 92, 95, 96). The specific con
sequences of thymus removal in the 22q11.2DS cohort remain to 
be defined.

Low peripheral T cell numbers and infectious risks
Thymic hypoplasia occurs in 60–70% of 22q11.2DS patients (3, 6). 
A smaller thymus leads to an ensuing peripheral T cell lym
phopenia, with impacted individuals having more frequent in
fections and longer recovery periods compared to age-matched 
controls (1, 3, 14, 97). Within their first year of life, 22q11.2DS 
patients have peripheral CD3+ T cell numbers with a mean of 
1,625 cells/µl (newborns) and 1,823 cells/µl (at 1 year of age) 
compared to the mean of 1-year-old controls at 3,400 cells/µl 
(98). This is an overriding basis for immune dysfunction in 
22q11.2DS, previously referred to as DiGeorge syndrome in older 
publications. The peripheral T cell lymphopenia is well-defined 
in children (98, 99, 100, 101). Adults with 22q11.2DS have T cell 
counts that are typically in the normal range (102, 103, 104). Yet, 
adults continue to get infections and higher rates of autoim
munity, supporting the concept that 22q11.2DS has long-term 
effects on the immune system (99).

Concerning infectious susceptibilities, the first descriptions 
of infections in those with 22q11.2DS (a.k.a. DiGeorge syndrome) 
focused on critically ill infants who likely had absent thymic 
tissue (105, 106). Candida was common along with viral in
fections that were often fatal (99). Today, such infants would be 
classified as having congenital athymia and, much like SCID, 
would be immediately recognized as having a life-threatening 
condition requiring strict isolation along with rapid therapeutic 
interventions (Table 2) (14, 35, 41, 42). In one study of genetically 
heterogeneous babies with athymia, 10/12 had significant in
fections prior to thymic implantation (55). As has been stressed 
in this review, most patients with 22q11.2DS have thymic hy
poplasia as opposed to aplasia. In a large cohort study of these 
22q11.2DS patients, 78% reported recurrent or severe infections 
including pneumonia, with 27% requiring hospitalization for 
their infections (107). Thus, an anticipated consequence for the 
22q11.2DS cohort with low T cells is infections (108). Most 
studies have not found a strict association between T cell num
bers and infections, although one study found an association of 
low effector memory CD8 T cells with increased infectious in
cidents (103, 109). Similarly, TREC counts have not been asso
ciated with infections. Intrinsic T cell functions and proliferative 
responses are usually normal. 22q11.2DS patients do not have 
typical opportunistic infections as was seen in the original co
horts of HIV infected individuals, who presented with a similar 
magnitude of T cell lymphopenia. In HIV, T cells are one of the 
viral targets, which complicates the comparison.

The median number of infections for a 22q11.2DS cohort 
ranges from 2 to 10/year. Pneumonia, otitis media, and sepsis are 
the three most common infections, with 83.3% of 22q11.2DS 
patients having had at least one hospitalization for these in
fections (110). In another large cohort study specifically focusing 
on patients with 22q11.2DS, serious infections were reported in 
33%. Two patients had opportunistic infections: Pneumocystis 
jiroveci and Mycobacterium abscessus; 14% of patients died, 75% of 

those deaths from infections (103). In a study of adults with 
22q11.2DS, infections persisted as a concern, as 38% had recur
rent pneumonias, 35% had recurrent otitis media, 11% had re
current sinusitis, and 35% had seborrhea (111). Other clinical 
considerations for 22q11.2DS patients include their past medical 
surgeries and/or additional genetic alterations. For example, 
those who had cardiac surgeries could have altered right atrial 
pressures and/or ligation/scarring of the thoracic duct. This 
could affect immune cell trafficking and circulating cell numbers 
(112). Some may have had chylothorax as a complication, with 
increased infections a recognized outcome due to lymphopenia 
secondary to chylothorax (113). Long-term studies of adults who 
have had thoracic duct ligation have not demonstrated any in
crease in infections (114, 115). In children who have impaired 
thoracic duct flow due to high right atrial pressures, the in
fections were restricted to warts (116). In summary, aberrant 
distribution of T cells has a limited impact on infection risk in 
non-22q11.2DS patients.

Vaccinations in the 22q11.2DS cohort
In 22q11.2DS patients with congenital athymia, live viral vac
cines should not be administered. In the information from vac
cine package inserts, it is recommended that live viral vaccines 
not be given to immunodeficient individuals. However, there is 
no clear delineation of what constitutes immunodeficiency. The 
Infectious Disease Society of America (IDSA) and American 
Academy of Pediatrics (AAP) recommend vaccinations for chil
dren with CD8 T cells >200 cells/µl and normal T cell prolifer
ative responses to mitogens (117, 118). Five separate studies of 
22q11.2DS patients investigated the safety of live viral vaccines, 
concluding that the vaccines are safe, except when the patient 
has very low or extremely low T cells (Table 2) (119, 120, 121, 122, 
123). One study utilized a CD8 count of <200 cells/µl to define a 
high-risk group. Among this “high-risk” group, adverse events 
were mild and no more common than in the group with higher 
CD8 T cells (123). A larger cohort study found that patients with 
adverse events related to the varicella vaccine had lower CD4 
percentages (24.8%) than those who did not (35.5%) (120). Yet, 
multiple studies noted that unvaccinated 22q11.2DS children had 
high rates of varicella infections. Summarizing these findings, 
vaccinations with live viral vaccines are safe for the vast ma
jority of 22q11.2DS patients, the exception being those with 
confirmed congenital athymia (failed two TREC newborn 
screens and CD3+ T cells <50 cells/µl) (14, 40). Published vaccine 
guidelines should be adhered to as cases of severe disease related 
to live viral vaccines have been reported (124). In addition to 
safety issues, there have been some concerns regarding dimin
ished antibody responses to vaccines in the 22q11.2DS cohort. 
The studies have been inconsistent and could be related to the 
age of the study population (125). The next section describes the 
larger landscape of humoral dysfunction.

Humoral dysfunction
A surprising finding was that some 22q11.2DS patients were 
antibody deficient (Table 1) (126). Early on, low IgM was iden
tified, but this was of unclear relevance due to recurrent in
fections (127). A multinational study found that 6% of patients 
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with 22q11.2DS had hypogammaglobulinemia, and a recent 
United States Immunodeficiency Network (USIDNET) study 
revealed that 6% were on immunoglobulin therapy (128, 129). 
Marginal zone B cells and natural antibodies (i.e., those involved 
in T cell–independent responses) were lower in patients over 
2 years of age (130). There is little information regarding the 
association of impaired antibody production and infections in 
22q11.2DS patients, but in studies of patients with other immu
nodeficiency disorders, lower antibody levels do correlate with 
increased numbers of infections (131, 132). In one study, in
fections correlated with lower IgG levels with no association 
with T cell counts, while associations with TREC counts were not 
investigated (103). Additionally, a key insight was that poor 
responses to vaccines were associated with autoimmunity (126).

The humoral dysfunction, defined by poor vaccine responses 
or low immunoglobulin levels, is found in a relatively small 
subset of 22q11.2DS patients (125, 133). Yet, there is evidence in a 
much larger percentage of patients that the B cell compartment 
is altered. The κ-deleting element recombination circle is normal 
in childhood, suggesting that the production of B cells is normal 
(100, 134). Yet, the population of switched memory B cells is low 
in about two thirds of the older 22q11.2DS children and adults 
(104, 135). Patients with low switched memory B cells have a 
higher rate of autoimmune cytopenias (136). This is specific for 
autoimmune cytopenias as it was not seen for autoimmune 
thyroid disease or juvenile arthritis (136). The B cells have di
minished somatic hypermutations compared to controls in both 
adults and children (137), suggesting that Tfh help is compro
mised despite increased numbers.

Autoimmunity
22q11.2DS patients have a higher incidence of autoimmune dis
orders, the most common being thyroiditis, arthritis, and auto
immune cytopenias (108, 138, 139). Autoimmune disease has not 
been specifically delineated in adults; however, psoriasis and 
autoimmune thyroid disease appear common (111). Additional 
autoimmune and inflammatory diseases reported include lupus, 
uveitis, inflammatory bowel disease, granulomatous interstitial 
lung disease, and diabetes. Thus, overall autoimmunity is in
creased in the 22q11.2DS cohort. Studies of biomarkers or clinical 
characteristics that would predict the development of autoim
mune disease have been undertaken by multiple groups. The 
most robust study of autoimmunity in 22q11.2DS were low 
switched memory B cells, low CD4 naı̈ve T cells predicting au
toimmune cytopenias (136). Low T cells have been recognized in 
patients with active autoimmunity since 2002 (126). Low overall 
B cells in two studies were associated with autoimmunity (139, 
140) and studies have made the important observation that a 
history of significant infections was associated with autoim
mune disease (108, 126, 141). This aligns with the observation 
that infection history is a risk factor for inflammation in 
chronic granulomatous disease (142) and it is worth consid
ering whether that phenomenon is globally the case across 
most IEIs. Concordant with the idea of an altered B cell com
partment in 22q11.2DS are findings, in several studies, that 
immunoglobulin dysfunction was associated with autoim
munity and infection (140, 141).

Allergies
Allergies are also recognized as a common complication in 
22q11.2DS. Several studies have documented increased allergies 
ranging from asthma to food and drug allergies (104, 140, 143). 
Increased Th2 cells have also been noted (144). The mechanism 
may be homeostatic proliferation, as is the case in Omenn syn
drome (83, 104). In a cross-sectional multicenter study, allergies 
were associated with recurrent infections and low T cells (140). 
One study specifically identified low CD8 T cells in children with 
22q11.2DS and allergies (108). In one study, 32% of patients had 
low IgM levels and this was associated with an odds ratio of 3.7 
for allergies (104). Thus, the biomarkers for allergy are diverse, 
but the allergies appear to be enriched in those with the most 
disordered immune system.

Other clinical features of 22q11.2DS
A correlative study examined the co-occurrence of various 
clinical phenotypes in 22q11.2DS. This study as well as others 
found no association of thymic hypoplasia and cardiac anomaly, 
hypoparathyroidism, or other clinical features (103). However, 
psychosis was found to be associated with clinical autoimmunity 
(145). In the general population, inflammation has been epide
miologically associated with schizophrenia and in the case of 
22q11.2DS, both IL-6 and IL-17 have been found elevated in those 
patients with psychoses (146, 147).

Management of adults with 22q11.2DS has evolved as more 
children have survived cardiac surgery and grown to adulthood. 
Nevertheless, information on adults is limited. An ongoing risk 
of sudden cardiac death has been documented, and rates of 
psychosis and other mental health issues have received appro
priate focus (148). A consensus guideline on management of 
adults has recently been developed (1).

The added complexities of 22q11.2DS on immunity
The cytoband 22q11.2 is a complex genetic region, with the 8 
highly homologous low copy repeats (LCRs) responsible for the 
chromosomal deletions on 22q11.2DS. These LCRs are only pre
sent in higher order primates, with humans having expanded 
their number to eight (LCR A–H), with LCR A existing as eight 
allelic variants in the population (16, 17). These LCRs may 
function as chromatin assembly hubs, regulating gene expres
sion both within the 22q11.2 locus and, as recently described, 
>300 genes from distinct chromosomal locations (149, 150). This 
epigenetic regulation likely accounts for some of the clinical 
variability among 22q11.2DS patients, with transcriptomic dif
ferences reported in T, B, and mast cells (4, 52, 149, 151, 152). For 
example, RNA sequencing of circulating T cells from 22q11.2DS 
patients compared to controls suggested defective cell and be
havior pathways along with liver X receptor/retinoid X receptor 
regulated processes (91). RNA sequencing of peripheral blood 
comparing 22q11.2DS and controls also revealed an altered gene 
expression in B cells and mast cells, which could result from 
epigenetic changes in genes outside the 22q11.2DS locus (153).

Of the genes within the 22q11.2DS locus, the haploinsufficiency 
of several may impact the phenotypes (Table 3). Examples in
clude Claudin 5, a tight junction protein encoded on chr. 22q11.2 
(15, 154, 155). In mouse models, a deficiency of Claudin 5 reduces 
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T cell egress by disrupting the thymic cortex–blood barrier along 
with an impact on NCC-derived perivascular cell–endothelial 
cell interactions (156, 157). While haploinsufficiency is not a 
knockout, reduced levels of Claudin 5 could contribute to dis
rupted perivascular–endothelial functions. For example, blood 
vessel organoids, formed with induced pluripotent stem cells 
prepared from 22q11.2DS patients, are smaller than controls 
(158, Preprint). There is an increased spacing between the per
ivascular and endothelial cells along with more collagen and 
fibronectin evident in such “22q11.2” organoids (158, Preprint). 
22q11.2DS patients have increased vascular leakage, assessed in 
the blood–brain barrier (154). This leakage, perhaps partly im
pacted by the haploinsufficiency of Claudin 5, could increase 
immune cell trafficking to the brain. TBX1, the key driver of the 
congenital malformations in 22q11.2DS, regulates vascular for
mation in the developing brain (159). In the mouse models of 
22q11.2DS, embryonic thymuses had diminished vascularization 
(67, 72). Recent findings indicate a postnatal role for TBX1 re- 
expression in supporting lymphangiogenesis in the heart fol
lowing ischemia (159). All these findings suggest the vascular 
changes due to 22q11.2DS are potentially impacting either im
mune cell trafficking to the sites of infection and/or cell–cell 
interactions in the secondary lymphoid organs. Interestingly, 
some of the behavioral issues in mice haploinsufficient in Tbx1 
improved following vitamin B12 administration (160). CRKL is 
another gene encoded on chr. 22q11.2, haploinsufficient in pa
tients with the 3-Mb but not 1.5-Mb deletion (Fig. 1 B). Complete 

knockouts of CRKL in mice, which is prenatal lethal, lead to 
overlapping congenital phenotypes as for those with 22q11.2DS 
(161). For some years, it was thought that CRKL was the main 
driver of the human 22q11.2DS phenotype (162). CRKL knock
down has been shown to impact T cell function and its hap
loinsufficiency in 22q11.2 could affect both T and natural killer 
(NK) cell activities in patients. For T cells, this is not readily 
evident in 22q11.2DS patients, with CRKL suggested more im
portant for NK cell functions (163, 164). Over time, CRKL has 
been felt to have more of an impact on urogenital aspects of the 
phenotype in 22q11.2DS (165). Glycoprotein 1b beta (GP1bb), also 
haploinsufficient due to 22q11.2DS, is involved in platelet ad
hesion and hemostasis. While this could explain the thrombo
cytopenias and increased bleeding noted in 22q11.2DS patients, 
thrombocytopenia is not consistently seen in all individuals 
(166). Again, epigenetic regulation and/or better stratification 
of affected individuals could reveal additional causes of the 
thrombocytopenia. The deletion of Hira or Dgcr8 in mice (both 
encoded on chr. 22q11.2DS) leads to impaired hematopoiesis 
and compromised stem cell proliferation (167, 168). DGCR8 is a 
miRNA processing enzyme and its haploinsufficiency reduces 
the expression of diverse miRNAs (169, 170, 171, 172). miRNAs 
are small noncoding RNAs, 21–23 nucleotides in length, that 
have key roles in regulating global stress responses (173). No
tably, 22q11.2DS patients, haploinsufficient in DGCR8, have a 
dysregulation in miRNA expression patterns, suggesting an 
impact on immune functions (169, 174). Perhaps due to other 

Table 3. Key genetic and epigenetic modifiers encoded on chr. 22q11.2

Gene name 
(protein name if 
coding)

Gene function Mechanism of action Clinical phenotypes Comparative mouse modelsa

TBX1 (T-box 
transcription factor 
1)

Transcription factor Binds DNA sequences and associates 
with histone methyltransferases to 
activate transcription

Multiple and variable 
congenital defects (see 
Table 1)

KOb is embryonic lethal 
Haploinsufficiency: Similar 
phenotypes as humans but much less 
penetrant thymic hypoplasia

CRKL (CRK-like) SH2 and SH3 domain 
containing intracellular 
signaling adapter protein

Promotes intracellular signal 
transduction

Genetic modifier of 
22q11.2DS

KO is prenatal lethal with heart, liver, 
and placental defects 
Crkl+/−Tbx1+/− mice: CHDc and thymic 
hypoplasia

CLDN 5 (CLAUDIN 
5)

Tight junction protein Blood–brain barrier (BBB) integrity 
Cortical thymus–blood barrier

Increased vascular 
permeability and 
weakened BBB

Mouse KO leads to nonviable 
offspring due to defective BBB

DGCR6 (DGCR6) Nuclear phosphoprotein Expressed in neural crest cells 
Homology to laminin-g1 chain

CHD with deletion or 
duplication

Haplosufficiency associated with 
learning deficit

DGCR8 (DGCR8) MicroRNA processing 
enzyme

Required for miRNA biogenesis Processing microRNAs in 
immune cells and neural 
progenitors

KO is embryonic lethal at E6.5

MiR-185 MicroRNA Targets SERCA2, BTK, MZB1, NFAT, 
CAM4K

Potential contributor to 
autoantibody production

KO is normal: Increased bone 
formation during osteogenesis 
Haploinsufficiency correlated with 
increased autoantibody

DGCR5 LncRNA Regulator of alternative splicing Unknown No mouse model

aPhenotypic differences exist in strains used.
bKnockout.
cCongenital Heart Disease
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epigenetic changes, miRNA expression patterns can be quite 
hypervariable in the 22q11.2DS cohort relative to controls (174). 
There are several miRNAs haploinsufficient due to their being 
encoded on chr. 22q11.2, including miR-185. In immune cells, 
miR-185 targets several key transcripts involved in B and T cell 
receptor signaling (175). Among the targets are Bruton’s tyrosine 
kinase (B cells), with reduced levels of miR-185 correlating with 
B cell autoantibody production (176). Other miR-185 targets in 
immune cells include MZB1, NFATc3, and CAMK4, which are 
involved in antigen receptor–mediated signaling (175). In hippo
campal neurons, miR-185 targets sarcoplasmic/endoplasmic re
ticulum calcium ATPase 2 (SERCA2) (151). In mouse models, 
reduced expression of miR-185 leads to presynaptic neurotrans
mitter release. Lastly, mitochondria appear to be dysfunctional in 
22q11.2DS, a feature that appears to be of particular importance in 
neural stem cells (15, 177, 178). Not yet fully understood are the 
impacts of many lncRNAs and several sncRNAs (15–50 nucleotides 
in length) haploinsufficient in the 22q11.2DS cohort (4, 179, 180). 
Several of these are listed in Table 3, with ongoing studies ad
dressing their contributions to 22q11.2DS. In summary, 22q11.2DS 
remains a complex syndrome due to both genetic and epigenetic 
changes that can vary from individual to individual (4).

Summary
22q11.2DS is a complex syndrome arising during embryogenesis 
that impacts many organ systems. The impacts of the deletion on 
immune function are similarly diverse, with direct effects re
lated to thymic hypoplasia and indirect consequences resulting 
from altered thymic and/or secondary lymphoid environments. 
While the driver of these effects on the immune system is pri
marily related to the severity of T cell lymphopenia, cell types 
including innate lymphoid cells, B cells, NK cells, and mast cells 
may also be affected.
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ger, K. Warnatz, and A. Šedivá. 2018. Follicular helper T cells in Di
George syndrome. Front. Immunol. 9:1730. https://doi.org/10.3389/ 
fimmu.2018.01730

86. Di Cesare, S., P. Puliafito, P. Ariganello, G.E. Marcovecchio, M. Man
dolesi, R. Capolino, M.C. Digilio, A. Aiuti, P. Rossi, and C. Cancrini. 2015. 
Autoimmunity and regulatory T cells in 22q11.2 deletion syndrome 
patients. Pediatr. Allergy Immunol. 26:591–594. https://doi.org/10.1111/ 
pai.12420

van Oers and Sullivan Journal of Human Immunity 11 of 14 
Immune manifestations with 22q11.2 deletion syndrome https://doi.org/10.70962/jhi.20250190 

D
ow

nloaded from
 http://rupress.org/jhi/article-pdf/2/1/e20250190/1952563/jhi_20250190.pdf by guest on 10 February 2026

https://doi.org/10.1093/hmg/ddh176
https://doi.org/10.1016/j.pneurobio.2015.03.004
https://doi.org/10.1016/j.pneurobio.2015.03.004
https://doi.org/10.3389/fimmu.2020.00830
https://doi.org/10.1242/dmm.012484
https://doi.org/10.1016/j.jaci.2017.03.020
https://doi.org/10.1016/j.jaci.2017.03.020
https://doi.org/10.1016/j.jaci.2007.12.1181
https://doi.org/10.1016/j.jaci.2007.12.1181
https://doi.org/10.1371/journal.pone.0230668
https://doi.org/10.1371/journal.pone.0230668
https://doi.org/10.1016/0002-9149(86)90256-0
https://doi.org/10.1016/0002-9149(86)90256-0
https://doi.org/10.1242/dev.028902
https://doi.org/10.1242/dev.028902
https://doi.org/10.1242/dev.059998
https://doi.org/10.1242/dev.059998
https://doi.org/10.1242/dev.127.8.1583
https://doi.org/10.1242/dev.127.8.1583
https://doi.org/10.1006/smim.1998.0158
https://doi.org/10.1038/373350a0
https://doi.org/10.1038/373350a0
https://doi.org/10.1172/JCI160101
https://doi.org/10.1172/JCI160101
https://doi.org/10.1093/hmg/ddm291
https://doi.org/10.1093/hmg/ddm291
https://doi.org/10.1073/pnas.201127298
https://doi.org/10.70962/jhi.20250143
https://doi.org/10.70962/jhi.20250143
https://doi.org/10.3389/fimmu.2022.864777
https://doi.org/10.3389/fimmu.2022.864777
https://doi.org/10.3389/fcell.2021.664168
https://doi.org/10.3389/fcell.2021.664168
https://doi.org/10.1080/03008207.2016.1183667
https://doi.org/10.1002/jcp.21164
https://doi.org/10.70962/jhi.20250143
https://doi.org/10.70962/jhi.20250143
https://doi.org/10.1126/sciadv.abm9844
https://doi.org/10.1126/sciadv.abm9844
https://doi.org/10.1016/j.cell.2022.05.018
https://doi.org/10.1016/j.cell.2022.05.018
https://doi.org/10.1038/s41577-023-00911-8
https://doi.org/10.1038/s41577-023-00911-8
https://doi.org/10.1084/jem.20230896
https://doi.org/10.3389/fimmu.2019.00447
https://doi.org/10.3389/fimmu.2023.1088059
https://doi.org/10.3389/fimmu.2023.1088059
https://doi.org/10.1038/s41586-024-07944-6
https://doi.org/10.1016/j.clim.2023.109793
https://doi.org/10.1016/j.clim.2023.109793
https://doi.org/10.1007/s10875-021-01123-2
https://doi.org/10.1007/s10875-021-01154-9
https://doi.org/10.1182/blood-2003-08-2824
https://doi.org/10.1007/s10875-024-01689-7
https://doi.org/10.3389/fimmu.2018.01730
https://doi.org/10.3389/fimmu.2018.01730
https://doi.org/10.1111/pai.12420
https://doi.org/10.1111/pai.12420


87. Ferrando-Mart́ınez, S., R. Lorente, D. Gurbindo, M.I. De Jose, M. Leal, 
M.A. Munoz-Fernandez, et al. 2014. Low thymic output, peripheral 
homeostasis deregulation, and hastened regulatory T cells differentia
tion in children with 22q11.2 deletion syndrome. J. Pediatr. 164:882–889. 
https://doi.org/10.1016/j.jpeds.2013.12.013
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