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The systemic effects of 22q11.2 deletion syndrome

on immunity

Nicolai S.C. van Oers*@ and Kathleen E. Sullivan?*®

22q11.2 deletion syndrome (22q11.2DS) affects about 1/2,150 individuals, causing complex and variably penetrant clinical
problems. The clinical phenotypes evident at birth can include thymic hypoplasia, hypoparathyroidism, heart defects, and/or
facial dysmorphism. Neurological issues including behavioral problems such as autism spectrum disorders and schizophrenia
are evident at later postnatal periods. Thymic hypoplasia affects about 60-70% of patients, leading to T cell lymphopenias of
varying severity. In rare cases, a congenital athymia occurs, necessitating a thymic implant. This review provides information
regarding the causes and consequences of 22q11.2DS on thymic functions along with its broader impacts on the immune
system. The affected immune cells include T, B, and mast cells. Patients with 22q11.2DS have more infectious, autoimmune,
and allergic complications. Broader systemic changes including increased vascular permeability, a disrupted blood-brain
barrier, and epigenetic alterations resulting from deletions on chromosome 22q11.2 affect many organ systems that can

involve immune responses.

Introduction

Overview

22ql11.2 deletion syndrome (22q11.2DS, a.k.a. DiGeorge syn-
drome) is a multi-syndromic condition consisting of congenital
malformations arising during embryogenesis along with later
onset neurological complications (1, 2, 3, 4, 5, 6, 7). The preva-
lence of 22q11.2DS is 1/2,150 live births (2). The extent and se-
verity of the congenital problems due to 22q11.2DS are highly
variable and can include thymic hypoplasia, hypoparathyroid-
ism, cardiac outgrowth vessel defects, and/or dysmorphic facial
features (Fig. 1 A) (1, 3, 4, 6, 8, 9, 10, 11, 12). Postnatal issues
for patients encompass developmental delay, epilepsy, autism
spectrum disorder, and/or schizophrenia (Fig. 1 A) (13, 14, 15).
These diverse and broad clinical symptoms result from a com-
mon 3 Mb or less frequent, nested 1.5 Mb deletion on chromo-
some 22q11.2 (chr. 22q11.2), which arises because of improper
meiotic recombination (Fig. 1 B) (16, 17). Duplication of chr.
22q11.2 results in some overlapping phenotypes as the deletions,
although these are less severe and less penetrant (Table 1) (18). In
22q11.2DS, a recurrent 3-Mb deletion occurs in ~85-90% of
individuals, creating a haploinsufficiency of about 146 genes.
These comprise 46 coding and the remainder noncoding ele-
ments (e.g., microRNAs [miRNAs], long noncoding RNAs
[IncRNAs], and other small non-coding RNAs [sncRNAs] (Fig. 1B
and Table 1) (4). Among the 46 coding genes, a haploinsufficiency

of T-box transcription factor 1 (TBXI) is the principal driver of
the embryonic malformations. This was confirmed in patients
carrying just TBXI variants (loss- and gain-of-function con-
sequences), whose clinical presentations can include thymic
hypoplasia, hypoparathyroidism, aortic arch defects, and/or
dysmorphic facial characteristics (Table 1) (19, 20). While a
haplosufficiency of TBXI drives the congenital problems, the
remaining coding and noncoding genes in the deleted region
do influence disease severity (4). The clinical impact on the
immune system depends primarily on whether the thymus is
hypoplastic, severely hypoplastic, or aplastic (Table 2). The
consequent medical care needs for 22ql1.2DS patients are
complex, and costs can exceed one million dollars during an
individual’s first two decades of life (21, 22, 23, 24, 25, 26, 27).
In this review, we will address pathophysiologic mechanisms,
clinical findings, and important questions still outstanding
regarding 22q11.2DS.

Diagnosis of thymic hypoplasia

Given the multiple congenital problems associated with
22q11.2DS, early fetal screening is beneficial to identify those
who may need advanced clinical care at birth. One early screen,
starting at week 10 of gestation, involves next-generation se-
quencing of cell-free DNA obtained from maternal plasma (28).
Diverse microdeletions, such as 22q11.2DS, can be detected in

1Departments of Immunology, Microbiology and Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA; 2Division of Allergy and Immunology,

Children’s Hospital of Philadelphia, Philadelphia, PA, USA.

*N.S.C. van Oers and K.E. Sullivan contributed equally to this paper. Correspondence to Nicolai S.C. van Oers: nicolai.vanoers@utsouthwestern.edu; Kathleen E. Sullivan:

sullivank@chop.edu.

© 2025 van Oers and Sullivan. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/

licenses/by/4.0/).

Rockefeller University Press
J. Hum. Immun. 2026 Vol. 2 No. 1  €20250190

W) Check for updates

https://doi.org/10.70962/jhi.20250190

920z Atenuged 0| uo 3senb Aq 4pd 06106202 1Ul/£952561/06 1052028/ L/z/Hpd-8lone/yl/Bio sseidnyj/:dny woy papeojumoq

1of14


https://orcid.org/0000-0002-6545-8405
https://orcid.org/0000-0002-3577-9021
mailto:nicolai.vanoers@utsouthwestern.edu
mailto:sullivank@chop.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.70962/jhi.20250190
http://crossmark.crossref.org/dialog/?doi=10.70962/jhi.20250190&domain=pdf

A Meiotic recombination Congenital Malformations

chr. 22q11.2 Thymic hypoplasia  Heart defects
A a Y
Normal 22911.2DS (AVAR
€~
| A
5
3 K
3MbA Postnatal complications
Developmental delay
x\“ * & ",
— =LCRs o= 4

Vascular leakiness

Hypoparathyroidism Dysphagia

-

ASD/Schizophrenia

Stromal/lImmune/Neuronal Cells

B
Chr. 22g11.2 region
1
22911.2DS
1.50r3Mb A
on one allele Gene (Product)
SLC7A4” "~ TTTTTTTTTTTTTIT '
CRKL H CRKL (protein)
plaka | transcript : PI4KA (protein)
directions .
MED15 | transcript
directions '
DGCR8 : 'Q DGCRS (protein)
DECRS | y E miR-185 (MiRNA)
COMT i «® COMT (protein)
TBX1 & i TBX1 (protein)
GP1BB SLC7A4 = ; GP1BB (protein)
[To) '
CLDN5 CRKL + : CLDNS5 (protein)
HIRA1 PIAKA ! t HIRA1 (protein)
MED15
DGCR5 : DGCRS5 (IncRNA)
PRODH : ! PRODH (protein)
DGCR6 i ! DGCRE6 (protein)

LCRA

Only a subset of genes are shown

Impacted
T/B/NK/ILCs cells, neurons
T/B/NK cells

T/B/NK cells, neurons
T/B/NK cells, neurons

Neurons

Mesenchymal
Platelets

Endothelial

Neurons

Neurons
Neurons
NCC-mesenchymal cells/T cells

Figure 1. Clinical phenotypes associated with genes on the frequently deleted segments of chr. 22q11.2. (A) Fetal and postnatal clinical problems
associated with 22q11.2DS arising from chromosomal deletions on 22q11.2. The red lines depict several of the low copy repeats (LCRs) in the chr. 22q11.2 region
that result in the 3- and 1.5-Mb deletions. (B) Chromosomal map with several of the genes indicated along with their impact on the immune and neuronal
systems. The blue and black defines the transcript direction. Note that PRODH and DGCR6 are encoded at the same location and transcribed in opposite di-

rections. BioRender was used for components of the image. ILC, Innate lymphoid cells.
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Table 1. Clinical presentations in 22q11.2DS compared to duplications on 22q11.2 and TBX1 variants

Clinical disorder 22q11.2DS LCRA-D 3-Mb deletion 22q11.2DS duplication TBX1 loss or gain of function
22q11.2DS LCRA-B 1.5-Mb deletion
Frequency 1/2,150 1/1,600 Rare (~10-15 families)
Congenital problems: % affected
Thymic hypoplasia 70-80% 1-2%? 20-45%
Thymic aplasia <1% Not reported Not reported
Hypocalcemia 50-65% 2.8% 45%
Cardiac defects 60-85% 4-6% 56%
Craniofacial features 80-90% 12.7% 100%
Speech delay (GERDP) 70-90% 46% 33%
Postnatal concerns: % affected
Immunological
Allergy 60% 25% Unknown
Autoimmunity 5-10% 2.3% Unknown
CD3* T cell lymphopenia 60-70% 2.6% Unknown
Decreased class switch memory B cells 70% 25% Unknown
Low pneumococcal vaccine responses 39% 0% Unknown
Hypogammaglobulinemia 6% 10-20% Unknown
Neurological
Developmental delay 8-10% 45-50% 30%
Autism spectrum disorder 15-40% 20% 38%¢
Schizophrenia 30-35% Protective 38%°¢
Disrupted blood-brain barrier Unknown Not reported Not reported

2Reflects low peripheral T cells.
bGastroesophageal reflux disease.
‘Listed as combined psychiatric disorders.

fetal DNA from the plasma (29). This microdeletion screen may
be recommended if parents are known carriers of 22q11.2DS
and/or there are suggestive prenatal indicators (30).

Congenital heart abnormalities are the most common birth
defect in humans, and 60-80% of 22q11.2DS patients have car-
diac anomalies (8, 30). Standard of care prenatal ultrasound
examinations includes fetal heart monitoring to detect cardiac
anomalies (31). High-resolution 2D fetal echocardiography, often
undertaken to characterize the cardiac problems, can also reveal
a small thymus. This is done by measuring the ratio between the
diameter of the thymus (T) (anteroposterior measure) and the
intrathoracic (T) mediastinum (11, 32). A normal human fetal
thymus has a mean T/T ratio of 0.44, while 22q11.2DS fetuses
have a mean value of 0.25 (11, 32). A reduced fetal T/T ratio is
suggestive of thymic hypoplasia, which correlates with lower
T cell counts postnatally (33). Not surprisingly, lower T cell re-
ceptor excision circles (TRECs) are also associated with lower
naive CD4 T cell counts (34).

A small fraction of 22ql11.2DS patients can be picked up
through newborn screening using a PCR screen that detects
TRECs (35, 36, 37, 38). TRECs form as T cells rearrange the TCR-a
locus in the thymus, and these excised DNA circles remain in the
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recent thymic emigrants (39). Low-to-absent TREC values in-
dicate low T cells, and 22q11.2DS is one of the more common
conditions identified in this newborn screen (35, 40, 41). A re-
peat low-to-undetectable TREC result suggests an inborn error
of immunity (IEI) (14, 42, 43). To confirm if a patient has dele-
tions on chr. 22q11.2 versus distinct genetic mutations causing
SCID, a chromosomal microarray analysis, multiplex ligation-
dependent probe amplification, or alternative copy number
analysis is required. It is estimated that <1% of patients with
22q11.2DS are identified through newborn screening (44). This s
because 60-70% of 22q11.2DS patients have low but sufficient
naive T cells, with TREC levels not flagged by newborn screens
(Table 2). Less than 1% of 22q11.2DS patients have congenital
athymia, necessitating a thymic implant (referred to as a trans-
plant in the UK) (Tables 1and 2) (14, 25, 40). Congenital athymia
in 22q11.2DS patients results from thymic stromal cell defects,
leading to a T'B*NK* phenotype with an absence or severe re-
duction in naive T cells (14, 40). Patients with thymic aplasia have
absent TRECs, failing newborn screens for those countries that
offer newborn screening for SCID. Many studies have provided
clinical practice guidelines for 22q11.2DS patients (Table 2) (1, 6,
9,14, 25, 45).
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Table 2. Clinical range of T cell lymphopenias among 22q11.2DS
patients

Thymic More severe Congenital Normal
hypoplasia (60- thymic athymia (<1%) thymus (30-
70%) hypoplasia 35%)
Reduced CD3* Low CD3* T cells  Very low CD3* CD3* T cells
T cells (<1,500 (>50 and <400 T cells (<50 cells/ >1,500 cells/

cells/pl) ul) ul

Low naive T cells

cells/pl)

Reduced numbers Low naive T cells  Higer naive to

of naive T cells and  (>50 cells/pl; >5% (<50 cells/ul; <5% memory T cell
expanded memory and <50% total total T cells) ratios

T cells T cells) (infants)
TREC levels are not  Undetectable or Undetectable or ~ Normal
flagged as very low TRECs®  very low TRECs®  TRECs
abnormal

Elevated T Possible maternal

follicular helper engraftment

cells

Treatment strategies

Monitor and Monitor and Thymic implant ~ Not
possible possible (transplant) applicable
prophylactics prophylactics

2Flagged by newborn screening and may vary between testing centers.

Thymic tissue development in 22q11.2DS
The thymic anlage and inferior parathyroids form within the
third pharyngeal pouch (third PP) during embryogenesis (weeks
7-8 of gestation in humans, days embryonic (E) E10.5-E1L5 in
murine embryos) (46). The thymic hypoplasia/aplasia in the
22q11.2DS cohort begins at this early development stage. Con-
firming this, thymic hypoplasia is already present in murine
embryos isolated between Ell and E13 from various mouse
models of 22q11.2DS (47, 48, 49, 50, 51, 52, 53). In such embryos,
the third PP and third and fourth pharyngeal arch arteries are
often underdeveloped or absent (47, 48, 49, 50, 51, 52, 53). While
developmental problems of the third PP explain the thymic and
parathyroid changes, alterations in the third and fourth pha-
ryngeal arches lead to abnormal patterning of the aortic arch,
along with the carotid and subclavian arteries. This explains the
outflow track problems in 22q11.2DS patients (8). Murine em-
bryos and postnatal mice also exhibit dysphagia, revealing the
extensive overlapping congenital abnormalities between human
22q11.2DS and mouse models (52, 54).

The ability of thymic implants (transplants) to reconstitute
T cell development in 22q11.2DS patients with congenital athy-
mia suggests the molecular cause of thymic aplasia is a stromal
cell problem. This is because the donor thymus is cultured for
3 weeks prior to implant, with most thymocytes dying (24, 55,
56). The remaining thymus is primarily composed of stromal
cells; thymic epithelial cells (TECs), fibroblasts, and the endo-
thelial vasculature (57). Implanted into the quadriceps, the do-
nor thymus attracts host hematopoietic cells that differentiate
into thymocytes (24, 25, 55). A candidate stromal cell hypothe-
sized as causal to 22q11.2DS phenotypes was the neural crest cell
(NCC)-derived mesenchymal cell (58, 59). During the formation
of the thymus, such NCC-derived mesenchymal cells surround

van Oers and Sullivan

Immune manifestations with 22q11.2 deletion syndrome

[P
(: ‘(J
\,3'0

the single endothelial layer within the third PP (Fig. 2 A) (46, 60).
The mesenchymal cells induce endothelial cell-to-TEC tran-
sitions. Subsequent multicellular interactions between the
mesenchymal cells, expanding TECs, and early immature
CD4-CD8" thymocytes create a 3D spongelike meshwork of cells
unique to the thymus (61, 62, 63). Studies comparing the de-
veloping embryonic thymuses from normal and 22q11.2DS mu-
rine models established key alterations in the mesenchymal cell
subsets (64). In the Tbx1"e2/7e2 mouse model (36% normal
levels of Thx1), embryos from E12 to E17.5 had a penetrant thy-
mic hypoplasia, an interrupted aortic arch, and mispositioned
parathyroids (49, 65, 66). Single-cell RNA sequencing of normal
embryonic thymuses from E13 to E13.5 gestational days revealed
six, five, and four mesenchymal, TEC, and hematopoietic cell
subsets, respectively, along with one endothelial population (64,
67, 68). Mesenchymal cells from the hypoplastic thymuses
(Tbx17e02/ne02 embryos) had an altered trajectory with pro-
nounced expansion of chondrocytes (67). Chondrocytes are
major producers of collagens and extracellular matrix (ECM)
proteins, which can increase tissue stiffness, reduce tissue ex-
pansion, and impair vascular development (69, 70, 71). Immu-
nofluorescence studies confirmed elevated collagens and ECM
proteins in both murine embryonic thymuses and postnatal
thymuses from human 22q11.2DS patients (72). Of note, replac-
ing the Thx17e02/ne02 megenchymal cells with normal ones in the
murine embryos restored embryonic thymic tissue growth in
reaggregate thymic organ culture assays (64). Single-cell RNA
sequencing confirmed that the murine “22q11.2” thymic me-
senchymal subsets had altered transcriptomes and trajectories,
while TECs had minimal alterations (67, 73). A significant ad-
vance was the discovery that administration of either minoxidil
or PGE, in the pregnant mouse models of 22q11.2DS normalized
thymic tissue growth (67). These drugs prevented chondrocyte
expansion and limited collagen and ECM production. Interest-
ingly, while most of the principal transcripts involved in TEC
functions were normal, several Sox-family transcription factors
(TFs) were elevated in the developing immature TECs in the
mouse embryos (72). It is not known how this might influence
the composition of TEC mimetics and medullary TEC subsets
that have developed tissue/organ specific identities by upregu-
lating lineage defining TFs (74). Single-cell RNA sequencing of
postnatal human thymuses from 22q11.2DS patients was re-
cently reported, further supporting a mesenchymal cause for
thymic hypoplasia (unpublished data). Comparisons with non-
22q thymuses revealed that the 22q11.2DS tissues had altered
biological pathways, with top hits including ECM assembly and
structure, collagen production, and fibril organization, along
with vascular and connective tissue development. The human
22q11.2DS thymuses had diminished medullary regions, with
more collagen deposition throughout the thymus.

T cell development in 22q11.2DS thymuses

In a normal thymus, T cell development follows an ordered
progression of immature CD4-CD8~ (double negative [DN]) to
CD4*CD8* (double positive [DP]) followed by CD4*CD8" and
CD4-CD8* single positive (SP) thymocyte subsets (75, 76).
Comparative analyses of human thymuses from 22q11.2DS
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Figure 2. Thymus specification and expansion during embryogenesis in normal and 22q11.2 settings. (A) The thymus and inferior parathyroids are
formed from the third PP, a temporary evagination of the gut tube during embryogenesis. The tissue is specified as NCC-derived mesenchymal cells sur-
rounding the endothelial layer and promoting the 3D thymic structure. (B) The thymus in 22q11.2DS is smaller than normal controls, with increased collagen
deposition due to an expanded chondrocyte population. There are fewer naive T cells in 22g11.2DS, with evidence of an expansion of memory cells, including an

elevated percentage of Tfh. Biorender was used for a portion of the image.

(thymic hypoplasia) and non-22q patients have revealed similar
processes of T cell development (77). However, the overall size
and cellularity of the thymuses were lower than controls (64, 77,
78). The percentages of DN, DP, and SP subsets remained simi-
lar, implying normal TEC functions (64, 77, 78). An initial report
suggested that thymic T regulatory cells (Tregs) from 22q11.2DS
patients had diminished suppressive activities; this was not
observed in other findings (77, 78). Taken together, the data
concur that 22q11.2DS leads to a smaller thymus that exhibits
relatively normal thymopoiesis (53). Recent spatial tran-
scriptomic and cellular indexing of transciptomes and epitopes
(CITE)-Seq have yielded numerous detailed processes governing
T cell development in the thymus (79). This includes the identifi-
cation of more than 50 different cell subsets, including 15 TEC
mimetics. A thorough comparison of these diverse cell types in
human 22q11.2DS thymuses will reveal how the mesenchymal cell
changes influence the other stromal and hematopoietic cell subsets.

The impact of 22q11.2DS on peripheral T cell subsets

The classic finding in 22q11.2DS patients with low T cell numbers
is a reduction in their naive CD4 T cells (Table 2) (34, 80).
Multiple studies have examined the impact of 22ql1.2DS on
specific T cell subsets among these CD4 T cells. There are more
memory T cells at all ages, with concordant increases among the
Thi, Th2, and Thi7 helper T cell subsets (34). Thi7 cells were
highest in those children who had the lowest TRECs (detected
at birth). These Th17 cells also had chromatin signatures of
senescence and inflammation (also documented by flow cy-
tometry) (81, 82, 83). It remains unclear as to whether an in-
flammatory milieu led to this senescence phenotype (84). Other
T cell types impacted by 22q11.2DS are less clearly linked to
thymic hypoplasia. For example, follicular helper T cells (Tfh)
actually increased in the 22q11.2DS cohort compared to normal
controls (85). This contrasts with the decreased number of Tregs
(86, 87), although Treg differences are not consistently observed
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(78, 88). Such T cell findings are difficult to align with just a
simple thymic hypoplasia and may reflect compromised thymic
structure or vasculature (72, 77). Immaturity in the structure of
the thymus has been observed with concomitant decreased
suppressor function of regulatory T cells, which is not always
noted (77, 78). This and/or the reduced size of the medullary
region of the thymus, potentially impacting TEC mimetics, could
be contributors to increased autoimmune diseases. Increased
Tth cells may be both a reflection of autoimmune disease and
differential gene expression (89, 90).

Clinical features

Most 22q11.2DS patients have reduced numbers of circulating
T cells relative to age-matched cohorts due to thymic hypoplasia
(Table 2) (1, 3). Thymic aplasia (congenital athymia) is rare (<1%
of 22q11.2DS patients). For congenital athymia, cultured thymic
implants have been performed for decades and, at present, are
primarily available in the U.S. and Great Britain. Referral to a
center for thymic implantation is based on laboratory features
demonstrating low TRECs, low-to-absent naive T cells, and poor
T cell mitogen responses (14). For those on the more extreme
degree of T cell lymphopenia but not eligible for a thymic im-
plant (>50 to <400 CD3* cells/ul), clinical considerations should
include prophylactic treatments and immunoglobulin therapies
(14, 40). Unfortunately, there are no therapeutic strategies to
increase circulating T cell numbers for 22q11.2DS patients with
persistent T cell lymphopenia. Another important consideration
is whether the 22q11.2DS patient may have had a partial or total
thymectomy because of their cardiac surgery (91, 92, 93). T cell
lymphopenia occurs after thymectomy in all patients (reviewed
in 94). While thymectomies were not considered a clinical
problem initially, recent studies have shown that infants/tod-
dlers who had their thymuses removed do have long-term
health complications (92). This includes higher mortality rates
at younger ages and greater risk scores for both cancer and
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autoimmunity compared to those whose thymus was retained
during cardiac surgery (91, 92, 95, 96). The specific con-
sequences of thymus removal in the 22q11.2DS cohort remain to

be defined.

Low peripheral T cell numbers and infectious risks

Thymic hypoplasia occurs in 60-70% of 22q11.2DS patients (3, 6).
A smaller thymus leads to an ensuing peripheral T cell lym-
phopenia, with impacted individuals having more frequent in-
fections and longer recovery periods compared to age-matched
controls (1, 3, 14, 97). Within their first year of life, 22q11.2DS
patients have peripheral CD3* T cell numbers with a mean of
1,625 cells/pl (newborns) and 1,823 cells/pl (at 1 year of age)
compared to the mean of 1-year-old controls at 3,400 cells/ul
(98). This is an overriding basis for immune dysfunction in
22q11.2DS, previously referred to as DiGeorge syndrome in older
publications. The peripheral T cell lymphopenia is well-defined
in children (98, 99, 100, 101). Adults with 22q11.2DS have T cell
counts that are typically in the normal range (102, 103, 104). Yet,
adults continue to get infections and higher rates of autoim-
munity, supporting the concept that 22q11.2DS has long-term
effects on the immune system (99).

Concerning infectious susceptibilities, the first descriptions
of infections in those with 22q11.2DS (a.k.a. DiGeorge syndrome)
focused on critically ill infants who likely had absent thymic
tissue (105, 106). Candida was common along with viral in-
fections that were often fatal (99). Today, such infants would be
classified as having congenital athymia and, much like SCID,
would be immediately recognized as having a life-threatening
condition requiring strict isolation along with rapid therapeutic
interventions (Table 2) (14, 35, 41, 42). In one study of genetically
heterogeneous babies with athymia, 10/12 had significant in-
fections prior to thymic implantation (55). As has been stressed
in this review, most patients with 22q11.2DS have thymic hy-
poplasia as opposed to aplasia. In a large cohort study of these
22q11.2DS patients, 78% reported recurrent or severe infections
including pneumonia, with 27% requiring hospitalization for
their infections (107). Thus, an anticipated consequence for the
22q11.2DS cohort with low T cells is infections (108). Most
studies have not found a strict association between T cell num-
bers and infections, although one study found an association of
low effector memory CD8 T cells with increased infectious in-
cidents (103, 109). Similarly, TREC counts have not been asso-
ciated with infections. Intrinsic T cell functions and proliferative
responses are usually normal. 22q11.2DS patients do not have
typical opportunistic infections as was seen in the original co-
horts of HIV infected individuals, who presented with a similar
magnitude of T cell lymphopenia. In HIV, T cells are one of the
viral targets, which complicates the comparison.

The median number of infections for a 22q11.2DS cohort
ranges from 2 to 10/year. Pneumonia, otitis media, and sepsis are
the three most common infections, with 83.3% of 22q11.2DS
patients having had at least one hospitalization for these in-
fections (110). In another large cohort study specifically focusing
on patients with 22q11.2DS, serious infections were reported in
33%. Two patients had opportunistic infections: Pneumocystis
jiroveci and Mycobacterium abscessus; 14% of patients died, 75% of
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those deaths from infections (103). In a study of adults with
22q11.2DS, infections persisted as a concern, as 38% had recur-
rent pneumonias, 35% had recurrent otitis media, 11% had re-
current sinusitis, and 35% had seborrhea (111). Other clinical
considerations for 22q11.2DS patients include their past medical
surgeries and/or additional genetic alterations. For example,
those who had cardiac surgeries could have altered right atrial
pressures and/or ligation/scarring of the thoracic duct. This
could affect immune cell trafficking and circulating cell numbers
(112). Some may have had chylothorax as a complication, with
increased infections a recognized outcome due to lymphopenia
secondary to chylothorax (113). Long-term studies of adults who
have had thoracic duct ligation have not demonstrated any in-
crease in infections (114, 115). In children who have impaired
thoracic duct flow due to high right atrial pressures, the in-
fections were restricted to warts (116). In summary, aberrant
distribution of T cells has a limited impact on infection risk in
non-22q11.2DS patients.

Vaccinations in the 22q11.2DS cohort

In 22q11.2DS patients with congenital athymia, live viral vac-
cines should not be administered. In the information from vac-
cine package inserts, it is recommended that live viral vaccines
not be given to immunodeficient individuals. However, there is
no clear delineation of what constitutes immunodeficiency. The
Infectious Disease Society of America (IDSA) and American
Academy of Pediatrics (AAP) recommend vaccinations for chil-
dren with CD8 T cells >200 cells/ul and normal T cell prolifer-
ative responses to mitogens (117, 118). Five separate studies of
22q11.2DS patients investigated the safety of live viral vaccines,
concluding that the vaccines are safe, except when the patient
has very low or extremely low T cells (Table 2) (119, 120, 121, 122,
123). One study utilized a CD8 count of <200 cells/pl to define a
high-risk group. Among this “high-risk” group, adverse events
were mild and no more common than in the group with higher
CD8 T cells (123). A larger cohort study found that patients with
adverse events related to the varicella vaccine had lower CD4
percentages (24.8%) than those who did not (35.5%) (120). Yet,
multiple studies noted that unvaccinated 22q11.2DS children had
high rates of varicella infections. Summarizing these findings,
vaccinations with live viral vaccines are safe for the vast ma-
jority of 22q11.2DS patients, the exception being those with
confirmed congenital athymia (failed two TREC newborn
screens and CD3* T cells <50 cells/pl) (14, 40). Published vaccine
guidelines should be adhered to as cases of severe disease related
to live viral vaccines have been reported (124). In addition to
safety issues, there have been some concerns regarding dimin-
ished antibody responses to vaccines in the 22q11.2DS cohort.
The studies have been inconsistent and could be related to the
age of the study population (125). The next section describes the
larger landscape of humoral dysfunction.

Humoral dysfunction

A surprising finding was that some 22ql11.2DS patients were
antibody deficient (Table 1) (126). Early on, low IgM was iden-
tified, but this was of unclear relevance due to recurrent in-
fections (127). A multinational study found that 6% of patients
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with 22q11.2DS had hypogammaglobulinemia, and a recent
United States Immunodeficiency Network (USIDNET) study
revealed that 6% were on immunoglobulin therapy (128, 129).
Marginal zone B cells and natural antibodies (i.e., those involved
in T cell-independent responses) were lower in patients over
2 years of age (130). There is little information regarding the
association of impaired antibody production and infections in
22q11.2DS patients, but in studies of patients with other immu-
nodeficiency disorders, lower antibody levels do correlate with
increased numbers of infections (131, 132). In one study, in-
fections correlated with lower IgG levels with no association
with T cell counts, while associations with TREC counts were not
investigated (103). Additionally, a key insight was that poor
responses to vaccines were associated with autoimmunity (126).

The humoral dysfunction, defined by poor vaccine responses
or low immunoglobulin levels, is found in a relatively small
subset of 22q11.2DS patients (125, 133). Yet, there is evidence in a
much larger percentage of patients that the B cell compartment
is altered. The «-deleting element recombination circle is normal
in childhood, suggesting that the production of B cells is normal
(100, 134). Yet, the population of switched memory B cells is low
in about two thirds of the older 22q11.2DS children and adults
(104, 135). Patients with low switched memory B cells have a
higher rate of autoimmune cytopenias (136). This is specific for
autoimmune cytopenias as it was not seen for autoimmune
thyroid disease or juvenile arthritis (136). The B cells have di-
minished somatic hypermutations compared to controls in both
adults and children (137), suggesting that Tth help is compro-
mised despite increased numbers.

Autoimmunity

22q11.2DS patients have a higher incidence of autoimmune dis-
orders, the most common being thyroiditis, arthritis, and auto-
immune cytopenias (108, 138, 139). Autoimmune disease has not
been specifically delineated in adults; however, psoriasis and
autoimmune thyroid disease appear common (111). Additional
autoimmune and inflammatory diseases reported include lupus,
uveitis, inflammatory bowel disease, granulomatous interstitial
lung disease, and diabetes. Thus, overall autoimmunity is in-
creased in the 22q11.2DS cohort. Studies of biomarkers or clinical
characteristics that would predict the development of autoim-
mune disease have been undertaken by multiple groups. The
most robust study of autoimmunity in 22ql11.2DS were low
switched memory B cells, low CD4 naive T cells predicting au-
toimmune cytopenias (136). Low T cells have been recognized in
patients with active autoimmunity since 2002 (126). Low overall
B cells in two studies were associated with autoimmunity (139,
140) and studies have made the important observation that a
history of significant infections was associated with autoim-
mune disease (108, 126, 141). This aligns with the observation
that infection history is a risk factor for inflammation in
chronic granulomatous disease (142) and it is worth consid-
ering whether that phenomenon is globally the case across
most IEIs. Concordant with the idea of an altered B cell com-
partment in 22q11.2DS are findings, in several studies, that
immunoglobulin dysfunction was associated with autoim-
munity and infection (140, 141).
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Allergies

Allergies are also recognized as a common complication in
22q11.2DS. Several studies have documented increased allergies
ranging from asthma to food and drug allergies (104, 140, 143).
Increased Th2 cells have also been noted (144). The mechanism
may be homeostatic proliferation, as is the case in Omenn syn-
drome (83, 104). In a cross-sectional multicenter study, allergies
were associated with recurrent infections and low T cells (140).
One study specifically identified low CD8 T cells in children with
22q11.2DS and allergies (108). In one study, 32% of patients had
low IgM levels and this was associated with an odds ratio of 3.7
for allergies (104). Thus, the biomarkers for allergy are diverse,
but the allergies appear to be enriched in those with the most
disordered immune system.

Other clinical features of 22q11.2DS

A correlative study examined the co-occurrence of various
clinical phenotypes in 22q11.2DS. This study as well as others
found no association of thymic hypoplasia and cardiac anomaly,
hypoparathyroidism, or other clinical features (103). However,
psychosis was found to be associated with clinical autoimmunity
(145). In the general population, inflammation has been epide-
miologically associated with schizophrenia and in the case of
22q11.2DS, both IL-6 and IL-17 have been found elevated in those
patients with psychoses (146, 147).

Management of adults with 22q11.2DS has evolved as more
children have survived cardiac surgery and grown to adulthood.
Nevertheless, information on adults is limited. An ongoing risk
of sudden cardiac death has been documented, and rates of
psychosis and other mental health issues have received appro-
priate focus (148). A consensus guideline on management of
adults has recently been developed (1).

The added complexities of 22q11.2DS on immunity
The cytoband 22ql1.2 is a complex genetic region, with the 8
highly homologous low copy repeats (LCRs) responsible for the
chromosomal deletions on 22q11.2DS. These LCRs are only pre-
sent in higher order primates, with humans having expanded
their number to eight (LCR A-H), with LCR A existing as eight
allelic variants in the population (16, 17). These LCRs may
function as chromatin assembly hubs, regulating gene expres-
sion both within the 22ql11.2 locus and, as recently described,
>300 genes from distinct chromosomal locations (149, 150). This
epigenetic regulation likely accounts for some of the clinical
variability among 22q11.2DS patients, with transcriptomic dif-
ferences reported in T, B, and mast cells (4, 52, 149, 151, 152). For
example, RNA sequencing of circulating T cells from 22q11.2DS
patients compared to controls suggested defective cell and be-
havior pathways along with liver X receptor/retinoid X receptor
regulated processes (91). RNA sequencing of peripheral blood
comparing 22q11.2DS and controls also revealed an altered gene
expression in B cells and mast cells, which could result from
epigenetic changes in genes outside the 22q11.2DS locus (153).
Of the genes within the 22q11.2DS locus, the haploinsufficiency
of several may impact the phenotypes (Table 3). Examples in-
clude Claudin 5, a tight junction protein encoded on chr. 22q11.2
(15, 154, 155). In mouse models, a deficiency of Claudin 5 reduces
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Table 3. Key genetic and epigenetic modifiers encoded on chr. 22q11.2

[P
)
\,3'0

Gene name Gene function Mechanism of action Clinical phenotypes Comparative mouse models®
(protein name if

coding)

TBX1 (T-box Transcription factor Binds DNA sequences and associates Multiple and variable KOP is embryonic lethal
transcription factor with histone methyltransferases to ~ congenital defects (see  Haploinsufficiency: Similar

1) activate transcription Table 1) phenotypes as humans but much less

penetrant thymic hypoplasia

SH2 and SH3 domain
containing intracellular
signaling adapter protein

CRKL (CRK-like)
transduction

Promotes intracellular signal

Genetic modifier of
22q11.2DS

KO is prenatal lethal with heart, liver,
and placental defects

Crkl*/~Tbx1*/~ mice: CHD® and thymic
hypoplasia

CLDN 5 (CLAUDIN  Tight junction protein

Blood-brain barrier (BBB) integrity
5) Cortical thymus-blood barrier

Mouse KO leads to nonviable
offspring due to defective BBB

Increased vascular
permeability and
weakened BBB

DGCR6 (DGCR6) Nuclear phosphoprotein

Expressed in neural crest cells
Homology to laminin-g1 chain

CHD with deletion or
duplication

Haplosufficiency associated with
learning deficit

DGCR8 (DGCRS) MicroRNA processing

Required for miRNA biogenesis

Processing microRNAs in KO is embryonic lethal at E6.5

enzyme immune cells and neural
progenitors
MiR-185 MicroRNA Targets SERCA2, BTK, MZB1, NFAT,  Potential contributor to KO is normal: Increased bone
CAM4K autoantibody production formation during osteogenesis
Haploinsufficiency correlated with
increased autoantibody
DGCR5 LncRNA Regulator of alternative splicing Unknown No mouse model

3Phenotypic differences exist in strains used.
bKnockout.
Congenital Heart Disease

T cell egress by disrupting the thymic cortex-blood barrier along
with an impact on NCC-derived perivascular cell-endothelial
cell interactions (156, 157). While haploinsufficiency is not a
knockout, reduced levels of Claudin 5 could contribute to dis-
rupted perivascular-endothelial functions. For example, blood
vessel organoids, formed with induced pluripotent stem cells
prepared from 22q11.2DS patients, are smaller than controls
(158, Preprint). There is an increased spacing between the per-
ivascular and endothelial cells along with more collagen and
fibronectin evident in such “22q11.2” organoids (158, Preprint).
22q11.2DS patients have increased vascular leakage, assessed in
the blood-brain barrier (154). This leakage, perhaps partly im-
pacted by the haploinsufficiency of Claudin 5, could increase
immune cell trafficking to the brain. TBXI, the key driver of the
congenital malformations in 22q11.2DS, regulates vascular for-
mation in the developing brain (159). In the mouse models of
22q11.2DS, embryonic thymuses had diminished vascularization
(67, 72). Recent findings indicate a postnatal role for TBXI re-
expression in supporting lymphangiogenesis in the heart fol-
lowing ischemia (159). All these findings suggest the vascular
changes due to 22q11.2DS are potentially impacting either im-
mune cell trafficking to the sites of infection and/or cell-cell
interactions in the secondary lymphoid organs. Interestingly,
some of the behavioral issues in mice haploinsufficient in Thx1
improved following vitamin B12 administration (160). CRKL is
another gene encoded on chr. 22q11.2, haploinsufficient in pa-
tients with the 3-Mb but not 1.5-Mb deletion (Fig. 1 B). Complete
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knockouts of CRKL in mice, which is prenatal lethal, lead to
overlapping congenital phenotypes as for those with 22q11.2DS
(161). For some years, it was thought that CRKL was the main
driver of the human 22q11.2DS phenotype (162). CRKL knock-
down has been shown to impact T cell function and its hap-
loinsufficiency in 22q11.2 could affect both T and natural killer
(NK) cell activities in patients. For T cells, this is not readily
evident in 22q11.2DS patients, with CRKL suggested more im-
portant for NK cell functions (163, 164). Over time, CRKL has
been felt to have more of an impact on urogenital aspects of the
phenotype in 22q11.2DS (165). Glycoprotein 1b beta (GPIbb), also
haploinsufficient due to 22q11.2DS, is involved in platelet ad-
hesion and hemostasis. While this could explain the thrombo-
cytopenias and increased bleeding noted in 22q11.2DS patients,
thrombocytopenia is not consistently seen in all individuals
(166). Again, epigenetic regulation and/or better stratification
of affected individuals could reveal additional causes of the
thrombocytopenia. The deletion of Hira or Dgcr8 in mice (both
encoded on chr. 22q11.2DS) leads to impaired hematopoiesis
and compromised stem cell proliferation (167, 168). DGCRS is a
miRNA processing enzyme and its haploinsufficiency reduces
the expression of diverse miRNAs (169, 170, 171, 172). miRNAs
are small noncoding RNAs, 21-23 nucleotides in length, that
have key roles in regulating global stress responses (173). No-
tably, 22q11.2DS patients, haploinsufficient in DGCRS8, have a
dysregulation in miRNA expression patterns, suggesting an
impact on immune functions (169, 174). Perhaps due to other
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epigenetic changes, miRNA expression patterns can be quite
hypervariable in the 22q11.2DS cohort relative to controls (174).
There are several miRNAs haploinsufficient due to their being
encoded on chr. 22q11.2, including miR-185. In immune cells,
miR-185 targets several key transcripts involved in B and T cell
receptor signaling (175). Among the targets are Bruton’s tyrosine
kinase (B cells), with reduced levels of miR-185 correlating with
B cell autoantibody production (176). Other miR-185 targets in
immune cells include MZBI1, NFATc3, and CAMK4, which are
involved in antigen receptor-mediated signaling (175). In hippo-
campal neurons, miR-185 targets sarcoplasmic/endoplasmic re-
ticulum calcium ATPase 2 (SERCA2) (151). In mouse models,
reduced expression of miR-185 leads to presynaptic neurotrans-
mitter release. Lastly, mitochondria appear to be dysfunctional in
22q11.2DS, a feature that appears to be of particular importance in
neural stem cells (15, 177, 178). Not yet fully understood are the
impacts of many IncRNAs and several sncRNAs (15-50 nucleotides
in length) haploinsufficient in the 22q11.2DS cohort (4, 179, 180).
Several of these are listed in Table 3, with ongoing studies ad-
dressing their contributions to 22q11.2DS. In summary, 22q11.2DS
remains a complex syndrome due to both genetic and epigenetic
changes that can vary from individual to individual (4).

Summary

22q11.2DS is a complex syndrome arising during embryogenesis
that impacts many organ systems. The impacts of the deletion on
immune function are similarly diverse, with direct effects re-
lated to thymic hypoplasia and indirect consequences resulting
from altered thymic and/or secondary lymphoid environments.
While the driver of these effects on the immune system is pri-
marily related to the severity of T cell lymphopenia, cell types
including innate lymphoid cells, B cells, NK cells, and mast cells
may also be affected.
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