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Auto-Abs against type I IFNs: Strong, common, and 
global determinants of severe arboviral diseases
Adrian Gervais1,2*�, Alessandro Borghesi3,4,5,6,7*�, Jean-Laurent Casanova1,2,8,9,10*�, and Shen-Ying Zhang1,2,8*�

Human-tropic pathogenic arboviruses are spreading worldwide. There is immense interindividual clinical variability following 
infection with any arbovirus. Autoantibodies (auto-Abs) neutralizing antiviral type I IFNs (AAN-I-IFN) can underlie a small but 
growing number of severe arboviral diseases, whether transmitted by ticks (tick-borne encephalitis virus, TBEV; Powassan 
virus, POWV) or mosquitoes (West Nile virus, WNV; Usutu virus, USUV; Ross River virus, RRV) and whether due to flaviviruses 
(WNV, TBEV, POWV, and USUV) or alphaviruses (RRV). Evidence is documented in large cohort studies for WNV and TBEV. They 
can also account severe adverse reactions to the live-attenuated yellow fever virus vaccine. AAN-I-IFN are present before 
arboviral infection and are the cause of severe disease. Carriers of these auto-Abs are common worldwide (>100 million 
people), have a very high risk of severe disease (relative risk >100), and account for a sizeable proportion of cases (typically 
>10%). Other severe diseases due to different arboviruses may also be caused by these auto-Abs.

Introduction
Arthropod-borne viruses, generally abbreviated to arboviruses, 
form a large group of viruses transmitted to humans by he
matophagous vectors such as mosquitoes, ticks, midges, and 
sandflies (1, 2, 3, 4). They are predominantly ribonucleic acid 
viruses (among which most are positive single-stranded vi
ruses, and fewer are negative or double-stranded viruses), and 
rarely deoxyribonucleic acid viruses (a single virus). Key ar
bovirus families include Flaviviridae, Togaviridae, Bunyavirales, 
and Reovirales. Over 150 arboviruses can cause disease in hu
mans (5) (https://ictv.global, https://wwwn.cdc.gov/arbocat/), 
and at least half of all human pathogenic viruses are arbovi
ruses (6, 7). The arboviruses with the greatest impact on public 
health include dengue virus (DENV), chikungunya virus 
(CHIKV), Japanese encephalitis virus (JEV), yellow fever virus 
(YFV), Zika virus (ZIKV), West Nile virus (WNV), Oropouche 
virus, and tick-borne encephalitis virus (TBEV) (3, 8, 9, 10, 11, 12, 
13). Arboviral infections have diverse geographic distributions 
associated with the distributions of their vectors, which vary 
with climatic, ecological, and urban conditions. For instance, 
mosquitoes from the Aedes and Culex genera are the primary 
vectors for DENV, ZIKV, and WNV, whereas ticks from the Ix
odidae family transmit TBEV and POWV. The increasing spread 

of arboviral infections has been attributed partly to climate 
change and globalization, which facilitate the spread of vector 
populations (14, 15). In addition, increases in global mobility and 
trade have facilitated the transportation of infected animals, 
vectors, and humans. Consequently, arboviruses have become a 
significant global health burden, as suggested by recent epide
miological studies estimating that 73% of all newly identified 
human infections are caused by arboviruses (16), which account 
for infections in at least 400 million people annually (3, 17). Most 
infections are asymptomatic or benign, and both the frequency 
and nature of clinical disease differ between viruses, but, overall, 
about 1/100 infected individuals develop severe, sometimes fatal 
disease (18). Severe diseases are typically observed more fre
quently in low-resource regions lacking a robust healthcare in
frastructure (19). Arboviruses have a major impact on health and 
the economy in affected communities, and research is urgently 
required to find ways to prevent further spread and to reduce 
disease burden through targeted public health measures and 
novel therapeutic approaches.

The immense interindividual clinical variability observed 
following arbovirus infection is similar to that observed with 
many other pathogens, and the root cause of severe disease re
mains largely unexplained (7). Epidemiologically, age is the 
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strongest known predictor of neuroinvasive arboviral disease 
and death, with disease incidence peaking in children and the 
elderly (e.g., JEV and CHIKV encephalitis) or in the elderly (e.g., 
WNV, TBEV, and St. Louis encephalitis virus encephalitis) (20, 
21). The age-dependent “U-shape” prevalence curve for life- 
threatening infections is suggestive of inborn errors of immu
nity (IEI) in childhood or their phenocopies in the elderly, and 
the “J-shape” curve is suggestive of phenocopies only (22). Type I 
interferons (IFNs) have the capacity to limit the replication of 
many viruses, including arboviruses (e.g., WNV, DENV, YFV, 
and ZIKV), as shown in previous in vitro experimental models 
using cultured human cell lines (23), and in vivo in murine 
models (24, 25). In humans, candidate gene-based association 
studies have attempted to evaluate the contribution of common 
polymorphisms of certain type I IFN-inducible (OAS1, OASL, 
IRF3, MX1) and other (HLA loci, CCR5) genes to the outcome of 
WNV infection in humans. The odds ratios (ORs) ranged from 
0.19 to ∼10 (26, 27, 28, 29). However, the reproducibility of most 
of these data was low, probably due to the small numbers of 
patients studied or the small effect sizes of the variants studied. 
The most convincing data were obtained for homozygous CCR5 
c.554_585del (OR = 4.4 for symptomatic infection and 13.2 for 
death), which increases disease severity following infection with 
WNV (30). In this context, the much higher risk of arbovirus 
encephalitis in men over the age of 65 years is reminiscent of the 
pattern observed for critical coronavirus disease 2019 (COVID- 
19) pneumonia (31), 15–20% of cases of which are due to preex
isting circulating autoantibodies (auto-Abs) neutralizing type I 
IFNs (AAN-I-IFN) (32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 
64, 65, 66, 67, 68). Type I IFNs were originally identified and 
have since been extensively studied as antiviral molecules 
(69, 70, 71). The type I IFNs are comprised of 13 IFN-α subtypes, 
one IFN-β, one IFN-ω, one IFN-ε, and one IFN-κ. IFN-ω, IFN-ε, 
and IFN-κ are, respectively, produced by leukocytes, cells of the 
female reproductive tract, and keratinocytes, whereas IFN-α and 
IFN-β are produced by a broader range of human cells. These 17 
known subtypes of human type I IFNs all signal through the 
same receptor composed of IFN-α/β receptor (IFNAR)1 and IF
NAR2, which are ubiquitously expressed across the human 
body. No underlying IEI, related to type I IFNs or not, have yet 
been reported for arboviral diseases. The AAN-I-IFN occur in the 
general population (33, 72, Preprint) and underlie at least two 
other types of critical viral pneumonia (73, 74). We review recent 
findings indicating that in every country where they have been 
searched for, AAN-I-IFN are strong and common determinants 
of a growing number of severe arboviral diseases.

Severe adverse reaction to live-attenuated YFV vaccine
YFV is an orthoflavivirus of the Flaviviridae family that is mainly 
viscerotropic but can also exhibit neurotropic properties (75). It 
circulates principally in Africa and Central and South America. It 
can be transmitted to humans by Aedes and Haemagogus mos
quitoes and results in life-threatening disease in about one third 
of cases (76). YFV infection triggers ∼200,000 cases of disease 
and 30,000 deaths annually worldwide, with 90% of cases oc
curring in Africa (77). The live-attenuated YFV-17D vaccine has 

been widely available since 1938 and is considered effective and 
safe (78, 79, 80). However, very rare cases of severe adverse 
reaction to YFV-17D vaccine due to uncontrolled viral replication 
have occasionally been reported (81, 82, 83, 84, 85). In 2019, we 
reported a 14-year-old girl with autosomal recessive (AR) IF
NAR1 deficiency and no prior history of severe viral illness who 
developed severe viscerotropic disease following YFD-17D vac
cination, highlighting the fundamental role of type I IFNs in 
controlling YFV-17D (86). In this context, we recently studied 
seven other previously healthy patients aged 13–80 years with 
unexplained life-threatening YFV vaccine–associated disease 
(four with viscerotropic disease, two with neurotropic disease, 
and one with both) (87). One 13-year-old patient was found to 
have AR complete IFNAR2 deficiency. Three of the remaining six 
patients, vaccinated at the ages of 47, 57, and 64 years, had cir
culating auto-Abs neutralizing IFN-α and IFN-ω, and two of 
these patients also had auto-Abs neutralizing IFN-β. The binding 
capacity of these auto-Abs extended to all the other type I IFN 
subtypes except IFN-κ and IFN-ε, as observed in severe COVID- 
19 cases. Five of the eight patients (∼60%) studied by our group 
therefore had insufficient type I IFN immunity, explained in 
three of the eight (∼37.5%) patients by the presence of auto-Abs 
against type I IFNs. Consistently, another group found auto-Abs 
recognizing type I IFNs in three of the 10 patients (30%) studied 
(88); the neutralization capacity of these auto-Abs was not as
sessed. Overall, these results demonstrate that genetic defects of 
type I IFN immunity or auto-Abs neutralizing type I IFNs can 
underlie severe YFV-17D infection. These data also suggest that 
patients with known type I IFN deficiencies should, thus, avoid 
YFV vaccination, and pre-vaccination screening for auto-Abs 
could be useful. Moreover, naturally occurring YFV infection 
may itself be worsened by type I IFN deficiency and especially by 
AAN-I-IFN.

WNV neuroinvasive disease
WNV is a neurotropic mosquito-borne orthoflavivirus of the 
Flaviviridae family. Outbreaks of WNV infection are increasing 
in frequency and magnitude, and the geographic range of this 
virus is continually increasing worldwide (89, 90, 91, 92, 93). 
Infection with WNV triggers encephalitis in about 1 in 150 in
fected individuals, although this prevalence may be under
estimated (94, 95, 96, 97, 98). In 2023, we investigated an 
international cohort of 663 individuals infected with WNV, in
cluding 114 with silent infection, 104 with ambulatory mild in
fection (West Nile fever), and 441 hospitalized for WNV disease 
(WNVD), including 348/441 with neuroinvasive disease (en
cephalitis/meningitis). We found that ∼35% of the patients with 
WNVD had auto-Abs against IFN-α and/or IFN-ω, rising to ∼40% 
among those with WNV encephalitis, the most severe manifes
tation of WNV infection (99) (Fig. 1). By contrast, only 1.8% of 
individuals with silent infection had auto-Abs, a proportion 
similar to that in the general population. Individuals with auto- 
Abs neutralizing low concentrations of IFNs (100 pg/ml, about 
10 times of the physiological circulating I-IFN concentration in 
the human body) had an ∼20 times higher risk of WNVD, and 
those with auto-Abs neutralizing high concentrations of IFNs 
(10 ng/ml) had a 130 times higher risk of WNVD than individuals 
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without such auto-Abs. This risk was even higher in people 
under the age of 65 years, with an OR of about 500. Moreover, 
these auto-Abs were present in the cerebrospinal fluid of about 
70% of patients with detectable systemic auto-Abs. Importantly, 
our data indicate that AAN-I-IFN are present before WNV in
fection and that their levels remain stable over time, as they 
remain detectable months after the infection, consistent with 
the findings of a longitudinal study of Swiss patients with HIV 
infection (72, Preprint). A subsequent study reported life- 
threatening WNV infection in a patient with thymoma who 
also carried highly neutralizing auto-Abs against IFN-α and 
IFN-ω and was homozygous for CCR5 c.554_585del (100). 
These auto-Abs against IFN-α, -β, or -ω impair the protective 
anti-WNV response of the corresponding type I IFNs in VERO-E6 
and ARPE-19 cells in vitro (99, 101). Moreover, the blockade of 
I-IFN signaling led to increased infection of mouse enterocytes 
and gut and blood–brain barrier permeability changes in mice 
in vivo, resulting in more severe disease (102). Consistently, 

blockade of I-IFN signaling by human AAN-I-IFN led to in
creased WNV infection in human enteroid cultures. Finally, 
AAN-I-IFN have recently been found in two out of the three 
very rare cases studied with severe disease following infection 
by Usutu virus (USUV) (103), another mosquito-borne ortho
flavivirus closely related to WNV, probably via similar mech
anisms. Overall, AAN-I-IFN are causal for WNV encephalitis in 
about 40% of cases, which makes WNV encephalitis the human 
infectious disease for which the underlying mechanism is best 
explained to date.

Tick-borne encephalitis
TBEV is another neurotropic orthoflavivirus of the Flaviviridae 
family. It spreads mainly in Europe and Asia. It is transmitted to 
humans primarily via the bite of infected ticks, typically Ixodes 
ricinus and Ixodes persulcatus, which serve as both vector and 
reservoir hosts of the European and the Asian subtypes of TBEV. 
More rarely, TBEV can be transmitted via unpasteurized milk or 

Figure 1. Map of the distribution of the most endemic regions of the arboviruses for which auto-Abs against type I IFNs have been shown to underlie 
severe disease.
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dairy products from cattle exposed to ticks in endemic areas. 
TBEV infection is benign in at least 90% of cases but affects the 
central nervous system (CNS) in the remaining cases, causing 
mild (<5%), moderate (<4%), or severe (<1%) disease (2, 104, 105, 
106, 107). We studied a cohort of 441 individuals infected with 
TBEV from Austria, the Czech Republic, France, and Italy: 174 
mild (meningitis), 178 moderate (meningitis and one CNS le
sion), and 89 severe (TBEV encephalitis [TBE] with multiple CNS 
lesions) cases (108). We found that AAN-I-IFN were present in 
about 10% of the 89 TBE cases, versus only about 1% of the 
moderate and mild cases. None of the 13 asymptomatic cases had 
such auto-Abs. Auto-Abs capable of neutralizing high concen
trations (10 ng/ml) of type I IFNs conferred a significantly higher 
risk of TBE, with an OR of ∼21 for patients with auto-Abs neu
tralizing both IFN-α2 and IFN-ω. Auto-Abs neutralizing IFN-ω 
alone, at lower concentrations (100 pg/ml), also markedly in
creased the risk, with an OR of ∼7. Mortality was 25% in TBE 
cases with auto-Abs, versus only 7.5% in those without auto-Abs. 
As observed in the WNV study, younger patients (<65 years old) 
with auto-Abs had a higher estimated risk of severe disease than 
older patients (OR of ∼26 vs. ∼4) because auto-Abs are rarer in 
the <65 years age group of the general population. The actual 
risk may be higher in older individuals, whose type I IFN im
munity is declining for other reasons, such as the apparent de
creasing type I IFN production or response ability of some blood 
leukocytes (109, 110, 111). Auto-Ab levels remained stable over 
time in the few longitudinal samples tested. These auto-Abs 
were able to block the protective effect of exogenous IFN- 
α2 and IFN-ω against TBEV infection in Vero-E6 cells in vitro. 
These findings underscore the pathogenic role of AAN-I-IFN in 
the development of TBE. It is noteworthy that AAN-I-IFN have 
been found also in an extremely rare case of encephalitis fol
lowing infection by Powassan virus (POWV), another tick-borne 
orthoflavivirus (103), suggesting a more general role of AAN-I- 
IFN in the development of encephalitis triggered by these tick- 
borne orthoflaviruses (Fig. 1). This hypothesis warrants further 
investigation. The finding of AAN-I-IFN in patients with WNV 
encephalitis or TBE, in turn, also suggests that the extremely 
rare cases of WNV encephalitis or TBE in patients with delete
rious mutations of GATA2 or IRF7 are probably also due to im
paired type I IFN antiviral immunity (112, 113).

POWV encephalitis
POWV is a tick-borne neurotropic orthoflavivirus of the Flavi
viridae family endemic to North America that can cause serious 
neurological infections, such as encephalitis, particularly in 
older individuals (2, 114, 115). It can be transmitted to humans by 
the bites of Ixodes ticks, typically Ixodes cookei, Ixodes marxi, or 
Ixodes scapularis. Since the first human cases identified in 1958 in 
Ontario, Canada, and in 1970 in New Jersey in the United States, 
more than 250 cases have been reported over the years in Can
ada and the United States (115). Between 2004 and 2015, typi
cally fewer than 10 cases were reported in the United States 
annually, but this number now ranges between 20 and 50 in 
recent years (CDC, https://www.cdc.gov/powassan/data-maps/ 
historic-data.html#cdc_data_surveillance_section_4-view-the- 
historic-data). However, the prevalence of POWV infection in 

North America is unknown; it is probably well above the number 
of reported cases. Individuals without neuroinvasive symptoms 
are rarely tested, if at all, so very little is known about subclinical 
or mild infection (115). We studied three North American pa
tients with POWV disease: two men aged 37 and 70 years hos
pitalized with moderate disease and resulting in almost complete 
recovery, and a 68-year-old woman who developed severe en
cephalopathy, progressing to chronic respiratory failure and 
requiring ventilation support until her death a year later due to 
long-term sequelae (103). The two moderate cases had no de
tectable AAN-I-IFN, whereas the severe case had high levels 
of auto-Abs neutralizing both high and low concentrations of 
IFN-ω. All the samples tested were obtained from the patients 
in the first few days after infection. It is important to assess 
AAN-I-IFN in more patients with POWV infection, but this 
severe case already suggests that preexisting auto-Abs tar
geting type I IFNs probably play a role in the development of 
severe POWV infection. POWV is the second tick-borne neu
rotropic orthoflavivirus, after TBEV, for which AAN-I-IFN have 
been shown to result in severe infection (Fig. 1). These findings 
suggest that other patients suffering from severe TBEV or 
POWV infections, or other tick-borne viral diseases, should be 
tested for the presence of AAN-I-IFN and for genetic defects of 
type I IFN immunity.

Severe USUV disease
USUV is a mosquito-borne orthoflavivirus of the Flaviviridae 
family endemic to Africa and Europe (116, 117, 118, 119, 120). It 
was first identified in field-caught Culex neavei mosquitos in 
South Africa in 1959 and then in other African countries shortly 
afterward. The virus is thought to have been introduced into 
Europe in the 1960s and has already spread to other regions, 
including the Middle East and North America (121, 122). Cases of 
human USUV disease were first reported in Africa in the 1980s 
(116, 117, 118, 119, 120), then about 20 years later in Europe 
(116, 123). Those two regions account for all reported human 
cases so far, a total of between 200 and 300 cases, mostly in Italy 
and Austria (122, 123, 124, 125, 126). USUV typically causes 
asymptomatic infections in humans. However, some immuno
compromised individuals may display severe manifestations, 
mostly neurological. Unfortunately, the prevalence of USUV in 
Africa or Europe is unknown, and the acute USUV infections 
actually reported are not representative of the full spectrum of 
human USUV infections, as virus studies have generally been 
limited to cohorts of patients with signs of neurological in
fections of various degrees of severity or accidentally identified 
via donated blood samples. In a recent study, 34 USUV-infected 
individuals were tested for the presence of AAN-I-IFN in the 
blood: 31 asymptomatic cases and three severe cases (103). The 
three symptomatic cases, all men, aged 43, 78, and 80 years, 
displayed manifestations ranging from meningitis to myocar
ditis and meningoencephalitis, with one patient succumbing to 
the infection. Auto-Abs neutralizing both high and low con
centrations of IFN-α2, IFN-ω, and IFN-β were detected in two of 
the severe cases. One had USUV meningitis and the other had 
severe myocarditis, leading to cardiogenic shock. The asymp
tomatic cases had no such auto-Abs, underscoring the link 
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between the presence of neutralizing auto-Abs and the pro
gression to severe USUV disease (Fig. 1). These findings suggest 
that preexisting neutralizing auto-Abs against IFNs predispose 
individuals to severe manifestations of USUV infection. It would 
be important to assess the presence of AAN-I-IFN in the blood of 
other cases of severe USUV infection.

Severe Ross River virus (RRV) disease
RRV is an alphavirus of the Togaviridae family. It is prevalent in 
Australia and other parts of Oceania, with mosquito transmis
sion contributing to annual outbreaks (127, 128, 129). RRV was 
first isolated from an Aedes vigilax mosquito around 1960 near 
the Ross River in Australia (https://www.health.vic.gov.au/ 
infectious-diseases/ross-river-virus-disease), about 40 years 
after the first documented outbreak of RRV disease (also known 
as epidemic polyarthritis) in 1928 in Australia (127). A wide va
riety of mosquito species have since been found to transmit RRV. 
Unlike WNV, TBEV, POWV, and USUV, all of which are neuro
tropic flaviviruses, RRV is an alphavirus with an arthritogenic 
rather than neurotropic tropism. Infected individuals do not 
usually require hospitalization, and symptomatic cases are 
generally self-limiting, with symptoms and signs including fever 
and polyarthritis. Approximately 5,000 cases of RRV disease are 
recorded in Australia annually, making this condition the most 
common mosquito-borne disease in Australia. One recent study 
analyzed 96 individuals infected with RRV and with a disease 
severity ranging from mild to severe (103). Severe cases were 
defined as high clinical severity scores derived from a multidi
mensional reduction of the severity of prevalent manifestations 
(e.g., restless sleep and extended sick leave) (130). None of the 
individuals studied were hospitalized. Samples from one of the 
24 patients with severe disease, a 55-year-old woman, neutral
ized high and low concentrations of IFN-α2. This patient had the 
highest severity score of the entire cohort and, thus, the most 
severe disease of any of the patients tested. Interestingly, this 
patient was the only patient to report both headaches and fever 
during the entire course of infection, suggesting perhaps an 
unusual neurotropism of RRV. Her auto-Ab levels were stable as 
her blood continued neutralizing type I IFNs when tested a year 
later, whereas the blood of other mild and moderate cases dis
played no type I IFN-neutralizing activity when tested postin
fection. These results suggest that, although RRV rarely leads to 
severe disease, preexisting AAN-I-IFN may increase the severity 
of disease following infection (Fig. 1). Other cohort studies are 
warranted.

Concluding remarks
AAN-I-IFN have been shown to be pathogenic in a growing 
number of viral diseases since the COVID-19 pandemic. They 
were first shown in 2020–2021 to cause ∼15% of cases of life- 
threatening COVID-19 pneumonia (32, 34, 35, 36, 37, 38, 39, 40, 
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 
60, 61, 62, 63, 64, 65, 66, 67, 68), then ∼5% of cases of life- 
threatening seasonal influenza pneumonia (73) and ∼25% of 
cases of life-threatening Middle East respiratory syndrome 
pneumonia (74). It soon became apparent that these auto-Abs 
can also underlie life-threatening arboviral infections (Fig. 2). 

They are strong determinants of severe adverse reactions to the 
YFV live-attenuated vaccine, WNV encephalitis, TBE, POWV 
encephalitis, severe USUV disease, and RRV disease (87, 88, 99, 
103, 108). With the exception of severe adverse reactions to the 
YFV-17D vaccine, the other arboviral diseases follow the trans
mission of an orthoflavivirus (WNV, TBEV, POWV, and USUV) 
or an alphavirus (RRV) from animals to humans by mosquitoes 
(WNV, USUV, and RRV) or ticks (TBEV and POWV). All these 
viruses cause neurotropic disease, except for RRV, which is ar
thritogenic. The cellular and molecular mechanisms by which 
AAN-I-IFN underlie these severe arboviral infections remain to 
be clarified. Do type I IFNs normally block viral infection in the 
skin, blood, or brain? Which type I IFN–induced genes encode 
proteins that normally restrict viral infection in vivo? A forward 
genetic approach might help tackle these important questions 
(131). The AAN-I-IFN precede infection. The proportion of severe 
cases explained by these auto-Abs varies for each arboviral 
disease, but it is always high and causality is, therefore, almost 
certain, particularly given the very high ORs reported for in
fections in studies with a sufficiently large sample size. These 
auto-Abs have been shown to underlie severe cases for all ar
boviral infections studied to date. Future studies should focus on 
other arboviral infections, including those due to ZIKV, DENV, 
and CHIKV, to determine whether AAN-I-IFN are also deter
minants of severe infection with these viruses. Genetic defects of 
type I IFN immunity may be the cause of severe arboviral in
fections in people who do not carry AAN-I-IFN, warranting fu
ture investigations as well (131).

These discoveries have major clinical and public health im
plications. First, these auto-Abs have been found worldwide, 
with a prevalence of about 0.5% in individuals under the age of 
65 years and 5% in those over the age of 70 years due to germline 
(mostly in the young) or somatic (mostly in the elderly) genetic 
defects likely impairing thymic tolerance to self (I-IFN) (132, 133, 
134, 135, 136) (Fig. 2). We can therefore estimate that they are 
carried by over 100 million people globally. They may explain 
other severe viral illnesses beyond respiratory viral diseases and 
arboviral diseases. It has become important to determine the 
range of severe viral diseases potentially due to circulating AAN- 
I-IFN and the proportion of cases explained by AAN-I-IFN. 
Meanwhile, these auto-Abs should be systematically sought in 
any patient with unexplained severe arboviral disease. We 
recently developed a cheap, rapid test for use on whole blood 
to detect inherited or acquired deficits of type I IFN in a 
clinical laboratory (137). Benjamin G. Hale in Zurich has de
veloped a rapid sensitive test to screen for auto-Abs against 
type I IFNs neutralizing concentrations as low as 10 pg/ml (133, 
138, Preprint). The identification of a deficiency of type I IFN 
immunity might improve the management of some patients who 
could benefit from the administration of type I IFNs not neu
tralized by their auto-Abs. High doses of type I IFNs might even 
compensate for a lack of the same specific type I IFN subtypes 
neutralized by the patient’s auto-Abs, as shown in patients with 
auto-Abs against granulocyte-macrophage colony-stimulating 
factor (139, 140, 141, 142). Importantly, people with these auto- 
Abs should not be vaccinated with live-attenuated viral vaccines. 
It is tempting to speculate that the recent adverse reactions 
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reported in elderly individuals vaccinated with a live-attenuated 
CHIKV vaccine were also due to auto-Abs against type I 
IFNs (press release, https://sante.gouv.fr/actualites/presse/ 
communiques-de-presse/article/les-autorites-sanitaires-retirent- 
les-personnes-de-65-ans-et-plus-des-cibles-de). Finally, people 
living in regions in which such arboviruses are endemic, or 
people planning to travel to such regions, should poten
tially be tested for these auto-Abs. They could then adapt 
their behavior and use specific measures to avoid being 
bitten by arthropods. This is important, given the absence 
of human vaccines or specific antiviral treatments for most 
arboviruses.
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64. Vanker, M., K. Särekannu, A. Fekkar, S.E. Jørgensen, L. Haljasmägi, A. 
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