A novel heterozygous pathogenic AIRE variant
causing autoimmunity but not infectious
susceptibility
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Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is characterized by the triad of
hypoparathyroidism, Addison’s disease, and chronic mucocutaneous candidiasis due to biallelic deleterious variants in AIRE.
However, emerging evidence has established that some monoallelic variants affecting specific functional domains may also
drive autoimmunity by negative dominance. Here, we describe a novel heterozygous AIRE variant, c.1010G>T (p.Cys337Phe), in
three individuals from a Taiwanese-Singaporean family presenting with hypoparathyroidism, vitiligo, anemia, and ectodermal

abnormalities, but not candidiasis. Functional studies confirmed AIRE®337F s both loss-of-function and dominant negative to
wild-type AIRE. Detection of neutralizing autoantibodies against type I IFNs, but not Th17 cytokines, further supported an
APECED-like immunological profile and potentially explained the lack of infections in affected individuals. Like other dominant
negative AIRE variants, AIRE©33’F |ocalizes to the highly conserved PHD1 domain. Thus, our findings identify a novel
pathogenic heterozygous AIRE variant and broaden the phenotype of autosomal dominant APECED. We also highlight the
importance of functional validation in interpreting variants of unknown significance, particularly when disease prevalence and

variant profiles differ from typical cohorts.

Introduction

Biallelic loss-of-expression or loss-of-function (LOF) variants in
the autoimmune regulator (AIRE) gene form the genetic basis of
autosomal recessive (AR) autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy syndrome (APECED), also
known as autoimmune polyendocrine syndrome type 1 (1, 2, 3).
AIRE plays a vital role in central immune tolerance by inducing
expression of tissue-specific antigens (TSA) in the thymus,
leading to elimination of autoreactive T cells and induction of
T regulatory cells (4). Patients with APECED develop organ-
specific autoimmune endocrinopathies—most commonly hy-
poparathyroidism and primary adrenal insufficiency, chronic
mucocutaneous candidiasis (CMC), and neutralizing autoanti-
bodies (autoAbs) against a range of cytokines, including type
1 IFNs and Thi7-associated cytokines (4, 5, 6, 7, 8). Secondary
manifestations, such as gonadal failure, thyroid disease, type 1 dia-
betes mellitus, vitiligo, enamel hypoplasia, alopecia, keratitis, and

autoimmune liver disease may also be observed (4, 6, 9). The
clinical presentation can be highly variable even among sibling
pairs, complicating precise assertions of genotype-phenotype cor-
relations (4, 6, 9). The spectrum of disease heterogeneity likely
results from the differential impact of >100 identified AIRE variants
on protein function, as well as epigenetic and environmental in-
fluences (10). Epidemiologically, APECED occurs with higher inci-
dence in European populations such as Sardinians, Finns, and
Iranian Jews (1:9,000-1:25,000) (11, 12); however, incidence among
Asian populations is less well described (1:10 million among Japa-
nese population) (13, 14, 15).

While classic APECED is caused by biallelic LOF variants in
AIRE (1, 2, 4, 10), previous studies have identified monoallelic
pathogenic variants in exons encoding the Sp100, AIRE, NucP41/
75, and DEAF-1 (SAND); plant homeodomain 1 (PHD1); and PHD2
domains that exert a dominant-negative (DN) effect on wild-type
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Figure 1. Autosomal dominant AIRE deficiency. (A) Pedigree of a family with a DN LOF AIRE variant. The arrow denotes the proband (I1:1). (B) Schematic of
AIRE protein depicting the different functional domains and as well as AIRE variants/amino acid substitutions affecting the SAND, PHD1, and PHD2 domains that
have been previously identified in individuals with autosomal dominant APECED. The novel variant found in the family under investigation in our study is

indicated by the red arrow (C337F) (see refs 16, 17, 18, 19, 20).

(WT) AIRE protein (10, 16, 17, 18, 19, 20). These heterozygous
variants result in a milder clinical phenotype than AR APECED
and can have delayed onset and incomplete penetrance (10, 16, 17,
18, 19, 20). Affected individuals may also exhibit a broad clinical
spectrum, ranging from an absence of overt autoimmune symp-
toms to severe enteropathy, vitiligo, immunodeficiency, and the
variable presence of anti-cytokine and other autoAbs (10, 16, 17,
18, 19, 20).

Expanding on these prior findings, we describe and func-
tionally characterize a novel heterozygous AIRE variant,
¢.1010G>T, p.(Cys337Phe [C337F]), affecting the PHD1 domain in
three individuals across two generations in an Australian family
of Taiwanese-Singaporean descent. Affected individuals pre-
sented with a dominantly inherited phenotype of ectodermal
dysplasia and autoimmunity, but without CMC. The AIRE C337F
variant was demonstrated to be LOF in terms of inducing tran-
scription of AIRE-regulated genes and inhibited gene induction
by WT AIRE protein. Thus, our findings further reveal the ge-
netic diversity underlying APECED due to monoallelic variants
and negative dominance.

Results

A novel heterozygous AIRE variant (p.Cys337Phe) identified in
a family with clinical features of mild APECED

We describe three members of one family with a limited spec-
trum of APECED, including autoimmune polyendocrinopathy and
ectodermal dystrophy, but without candidiasis. The 9-year-old
male proband (I:1; Fig. 1) was referred to the pediatric immu-
nology clinic with a history of pernicious anemia, hypoparathy-
roidism, and hyperglycemia. He was born to non-consanguineous
parents of Taiwanese (maternal) and Singaporean (paternal) de-
scent. His past medical history was notable for recurrent febrile
seizures, persistent hypocalcaemia with nephrocalcinosis, chronic
iron deficiency anemia, recurrent aphthous stomatitis associated
with pharyngitis, and constipation. He also exhibited ectodermal
abnormalities including enamel hypoplasia, hypodontia, and
brittle nails, and later developed vitiligo. Of relevance, the pa-
tient’s younger sister (II:2) was already known to the immunology
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service for chronic spontaneous urticaria and hypoparathyroid-
ism, with symptom onset at 4 years of age. Both children displayed
normal anthropometry and had no additional morphological fea-
tures. Immunological investigations, including serum immuno-
globulin levels, lymphocyte subsets, and memory B cell
phenotyping, were within age-matched reference ranges. Lym-
phocyte proliferation assays showed intact responses to phyto-
hemagglutinin, but absent responses to candida antigens in both
siblings. Celiac disease screen was negative, and serial assess-
ments of glycated hemoglobin (HbA1C), thyroid function, cortisol,
and adrenocorticotropic hormone levels have remained normal.

Family history revealed that the children’s father (I:1) had
developed symptoms of hypoparathyroidism at the age of
10 years, characterized by muscle cramps, severe tetany, and
profound hypocalcaemia requiring treatment with calcium, vi-
tamin D, and hydrochlorothiazide. He had impaired fasting
glucose, and his annual HbAlc was in the prediabetic range.
There was no reported history of CMC in the proband, his sister,
or their father.

Gene panel testing in the proband (II:1), his sister (II:2), and
father (I:1) identified a heterozygous missense variant in AIRE
(c.1010G>T, p.C337F) in all three individuals, confirming pater-
nal inheritance and co-segregation with the clinical phenotype.
The panel included 14 genes associated with hypo- or hyper-
parathyroidism, including AIRE, AP2S1, CASR, CDC73, CDKNIA,
CDKNIB, CDKN2B, CDKN2C, GCM2, GNA11, MENI, PTH, RET, and
TRPV6. The AIREC337F variant is absent in the Genome Aggre-
gation Database and has not previously been reported in other
disease-associated variant databases (21). In silico predictions
were deleterious (AlphaMissense score: 0.97, “likely patho-
genic”), and the predicted substitution occurred within the
conserved PHD]1 of the protein. PHDLI is a zinc-coordinated do-
main critical for chromatin interaction and recognition of
posttranslational histone modifications (22, 23). The clinical
genetic laboratory classified the finding as a variant of uncertain
significance (VUS). Fig. 1 B depicts the AIRE protein, including
the different functional domains; the location of the novel var-
iant introducing the C337F substitution in the PHDI domain of
AIRE, as detected in the proband (II:1), his sister (II:2), and father
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(I:1); and all amino acid substitutions resulting from monoallelic
AIRE variants that have been previously identified in affected
individuals and established as causal for AD APECED, are also
shown (10, 16, 17, 18, 19, 20).

Cytokine and organ-specific autoAb screening

Given the strong clinical phenotype and segregation of the
ATRE®®37F variant in all affected individuals, further investiga-
tion into its potential functional significance was explored.
Neutralizing autoAbs against type 1 IFNs (IFN-o, IFN-B, and IFN-
w) and Th17 cytokines are a hallmark of AR APECED (4, 5, 7, 8).
Consequently, we tested serum from the three affected in-
dividuals for anti-cytokine autoAbs (24). Sera collected from the
proband (II:1) and his father (I:1) strongly reduced IFN signaling
induced by both high (10 ng/ml) and low (100 pg/ml) concen-
trations of IFN-a and IFN-w (Fig. 2 A and Table 1), demonstrating
the presence of neutralizing autoAbs against type I IFNs. The
proband’s sister, II:2, also showed neutralizing autoAbs against
high and low concentrations of IFN-w, but only against low
concentrations of IFN-a (Fig. 2 A and Table 1). None of the af-
fected individuals displayed evidence of neutralizing autoAb
activity against IFN-B (Fig. 2 A and Table 1). We extended these
findings by measuring autoAbs against type I (IFN-c, IFN-B, and
IFN-w) and type I (IFN-y) IFNs using Multiplex bead arrays (24,
25). This assay detected autoAbs binding to IFN-o and IFN-w, but
not IFN- or IFN-v, in serum from all three affected individuals
(Fig. 2 B). AutoAbs against IL-1, IL-3, IL-4, IL-6, IL-7, IL-10, IL-12,
IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-27, MCP-1, TGFB, TNF, or
GM-CSF were not detected in serum collected from any of the
affected individuals (Fig. 2 C and Table 1).

Organ-specific autoAb screening revealed positivity for glu-
tamic acid decarboxylase Abs in individuals I:1 and II:1, with
positivity for islet cell and intrinsic factor Abs observed exclu-
sively in patient II:1. Abs against thyroid peroxidase, thyro-
globulin, anti-tissue transglutaminase, IA-2, and zinc transporter
8 were negative in both siblings. Patient II:2 tested negative for all
organ-specific autoAb evaluated, as summarized in Table 1.

Dominant negative effect of C337F on induction of AIRE-
dependent gene expression

We next determined the impact of the ¢.1010G>T/p.C337F vari-
ant on induction of AIRE target genes. To do this, HEK-293T cells
were transfected with expression vectors encoding either
WT AIRE alone or AIREC337F alone. We also tested two other
AIRE variants that are known to be pathogenic when biallelic
(AIRER?57X) or monoallelic (AIREC3!Y) (16, 17, 18) As expected,
WT AIRE robustly induced transcription of well-established
AIRE-dependent target genes, including keratin 14 (KRTI4),
IGF-like family member 1 (IGFLI), calcium-binding protein A8
(S100A8), apolipoprotein A4 (APOA4), and insulin (INS) (Fig. 3 A).
In contrast, transfection with AIRER257X or AIREC31Y fajled to
induce mRNA expression of any of these genes, while AIREC337F
alone resulted in greatly reduced expression of KRTI4, SI00A8,
APOA4, and INS and modestly reduced levels of IGFLI (Fig. 3 A).
These results indicate that AIRE®*37F encoded by the novel AIRE
variant is LOF, similar to AIRE®*!"Y, which is also located within
the PHD1 domain of AIRE protein.
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We further examined whether the AIRE®*3’F variant could
interfere with the transcriptional activity of WT AIRE, as has
been reported in other individuals with milder forms of APECED
and heterozygous AIRE variants, including the AIRE®31'Y variant
(16, 17, 18). Co-transfection of HEK-293T cells with a 1:1 mixture
of both AIREWT and AIRE®337F vectors resulted in a level of
transcription of AIRE-target genes comparable to that observed
with ATRE®337F alone (Fig. 3 A). Similar results were obtained for
AIRE®!Y (Fig. 3 A), confirming that the c.1010G>T/p.C337F
variant impedes the function of WT AIRE by a mechanism of
negative dominance. In contrast, the AIRE®?>’X variant had ei-
ther no effect (KRTI4 and IGFLI) or a less than twofold effect
(s100A8, APOA4, and INS) on the ability of AIREWT to induce ex-
pression of AIRE-dependent target genes (Fig. 3 A), thereby es-
tablishing that the AIRE®?5”X variant is strongly pathogenic only
in homozygous form.

Importantly, induction of AIRE-independent genes, including
cyclin H (CCHN) and protein arginine methyltransferase 3 (PRMT3),
was unaffected across all conditions (Fig. 3 B). Collectively, these
findings demonstrate that AIRE®®37F is LOF and exerts a DN ef-
fect on WT AIRE-mediated transcriptional regulation in vitro.
The selective loss of AIRE target gene expression, with preser-
vation of AIRE-independent gene regulation, supports a specific
disruption of canonical AIRE-mediated transcription. These
findings suggest that AIREC33F s likely to disrupt central im-
mune tolerance in a manner analogous to that seen in biallelic
AIRE deficiency, supporting its pathogenic role in nonclassical
APECED-like disease.

Discussion

In this study, we describe a novel heterozygous deleterious AIRE
variant ¢.1010G>T/p.C337F in three family members with simi-
lar clinical features, including autoimmune polyendocrinopathy
and ectodermal dystrophy without CMC, and provide functional
evidence for LOF and negative dominance of this variant allele.
Our findings are consistent with previous reports that identified
monoallelic variants affecting the PHD1 domain that impair
expression of AIRE-regulated genes induced by WT AIRE.

The immune phenotype observed in this family overlaps with
that reported in AR APECED, including the presence of neu-
tralizing autoAbs to type I IFN (IFNa and IFNw), which are
recognized as a hallmark of classical APECED (4, 5,7, 8). Notably,
autoAbs against IL-17A, IL-17F, and family IL-22 were not de-
tected in the affected individuals. Thus, the lack of these autoAbs
is consistent with an absence of CMC in this family, which is
frequently observed in classical AR APECED and has been at-
tributed to impaired IL-17-mediated immunity to Candida albi-
cans (7, 8, 10, 26, 27, 28). IFN-y-mediated mucosal inflammation
has recently been implicated as another mechanism underlying
CMC in AR APECED (29). DN AIRE variants resulting in milder
phenotypes may confer a reduced propensity for developing
significant mucosal inflammation (10, 16, 17, 18, 19, 20). Although
CMC is uncommon in AD APECED, a few reported patients with
heterozygous AIRE variants that affect the SAND or PHDI1 do-
mains have developed fungal infection/mycosis in the absence of
detectable anti-IL-17 autoAbs (~10-15% vs. >90% in AR APECED)
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Figure 2. Detection of autoAbs against type I IFNs in AIRES337F individuals. (A) Neutralization of type | IFNs determined by a Renilla luciferase reporter
assay using transfected HEK-293T cells treated with IFN-a2 (10 ng/ml or 100 pg/ml), IFN-B (10 ng/ml), or IFN-w (10 ng/ml or 100 pg/ml) in the absence or
presence of plasma from healthy donors (HD) (n = 48, blue circles), individuals with the heterozygous AIRES337F variant (n = 3, red circles), or patients with
autoAbs against type | IFNs (n = 15, purple circles; positive controls). Data are expressed as relative luciferase activity (ISRE dual luciferase activity, with
normalization against Renilla luciferase activity) (24, 25). (B and C) Multiplex particle-based assay to detect autoAbs against (B) type | IFNs (IFNa2, IFNB, and
IFNw) and IFNy or (C) IL-1, IL-3, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-27, MCP-1, TGF B, TNF, and GM-CSF present in plasma from
healthy donors (n = 4, blue circles), individuals with the heterozygous AIRES33”F variant (n = 3, red circles), a patient with AR APECED (orange circles), or serum
samples obtained from individuals with autoAbs against IFNa2, IFNB, IFNw, IFNy, IL-6, IL-10, IL-12, IL-17A, IL-17F, IL-22, IL-23, TNF, and GM-CSF (purple circles;
positive controls). NB: Serum containing autoAbs against IL-B, IL-3, IL-4, IL-7, IL-21, IL-27, MCP-1, and TGFB were not available for testing as positive controls at
the time of testing the AD AIRE-deficient individuals (24, 25).
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Table 1. Clinical and serological features of family members with a heterozygous AIRE®**7F variant

Patient Sex/Age  Clinical manifestations  autoAbs

IFN-a IFN-w  IFN-f  IL-6, IL-17A, IL-17F, IL-22  TNF, GM-CSF  Organ-specific
P11I:1 M (9 yo) HP, PA, V, and ED Pos Pos Neg Neg Neg ICA, GAD, and IF
P2 112 F (7 yo) HP, CSU, and ED Pos Pos Neg Neg Neg
P31:1 M (43yo)  HPandPD Pos Pos Neg Neg Neg GAD

yo, years old; HP, hypoparathyroidism; PD, prediabetes; PA, pernicious anemia; V, vitiligo; ED, enamel dysplasia; CSU, chronic spontaneous urticaria; GAD,

glutamic acid decarboxylase autoAbs; ICA, islet cell autoAb; IF, intrinsic factor autoAbs.

(10, 16, 17, 18, 19, 20). This observation suggests that additional
mutation-specific, environmental, and immunological factors
may modulate mucosal susceptibility to CMC in the context of
heterozygous AIRE variants.

DN AIRE variants are largely clustered within the PHD1 zinc
finger domain, with some variants also affecting the SAND and
PHD2 domains (Fig. 1 B). The clinical phenotype associated with
these monoallelic variants ranges from asymptomatic to auto-
immunity (commonly vitiligo and enteropathy) and immune
deficiency, with or without production of autoAbs neutralizing
type 1 IFNs (10, 16, 17, 18, 19, 20). However, cases due to mono-
allelic AIRE variants like the ones described here often present
with milder disease and incomplete penetrance (10). These are
collectively referred to as “nonclassical APECED,” which differ
from the classical form caused by biallelic deleterious AIRE
mutations characterized by earlier onset CMC, hypoparathy-
roidism, or adrenal insufficiency (16). The proband in our study

presented with vitiligo and pernicious anemia, which have been
previously linked to DN AIRE variants affecting the PHD1 domain
(16, 18). However, hypoparathyroidism as an early feature in all
three affected family members (onset between 4 and 10 years)
suggests a more pronounced and earlier onset autoimmune
phenotype than commonly reported for monoallelic AIRE var-
iants affecting the PHD1 domain (10, 16, 17, 18, 19, 20). This ob-
servation highlights the clinical variability even among
individuals with monoallelic AIRE variants.

Variants affecting the caspase activation and recruitment
domains (CARD) domain of AIRE are disease-causing when in-
herited as an autosomal recessive trait, impairing nuclear
localization and interfering with oligomerization, thereby dis-
rupting the ability of AIRE to dimerize and activate transcription
(30). However, when co-expressed with WT AIRE, these CARD
domain mutants may still permit formation of functional dim-
ers, thus explaining why heterozygous carriers of variants that

A Il WTAIRE [ AIRER257X [ AIRE C311Y [ AIREC337F B
1.50= WT/R257X WT/C311Y WTI/C337F 1.50
1.25= 1.25
c c
9 9 z
S 1.004g-f----------ff - eeeeeeeee S 1.00 ----II?l
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Figure 3. DN impact of AIRE®33”F on WT AIRE-mediated gene transcription. HEK-293T cell lines were transfected with plasmids encoding either WT AIRE
or AIRER257X, AIREC3IY or AIRES337F variants alone, or equal amounts WT AIRE together with AIRER257X, AIRES312Y, or AIRES337F, (A and B) Transcriptional activity
was assessed by measuring expression levels of (A) known AIRE-regulated genes KRT14, IGFLI, SI00A8, APOA4, and INS or (B) non-AIRE-regulated genes CCHN
and PRMT3. Data are presented as mean fold-change in expression relative to cells transfected with WT 100% used as the calibrator sample (dotted line). Error
bars represent the standard error of the mean from three independent experiments.
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are only pathogenic in biallelic form do not develop disease (16).
Our findings suggest that the AIRE®®*7F variant affects the PHD1
domain, resulting in a clear DN effect on WT AIRE function. This
is consistent with previous data that stipulate monoallelic var-
iants within the PHD1 domain disrupt the structural integrity of
the core AIRE tetramer and its transcriptional activity (16, 31). By
enabling AIRE to bind unmethylated H3K4 and promote TSA
expression in medullary thymic epithelial cells, the PHDI1 do-
main of AIRE is critical for central immune tolerance (32, 33, 34).
Mutations at conserved cysteine residues within this domain,
such as C311Y, disrupt zinc coordination, leading to impaired
domain folding and function (16, 31, 35).

In conclusion, by characterizing the novel p. C337F variant
affecting the PHDI domain, our report expands the phenotypic
and spectrum of DN AIRE variants. Functional characterization
of VUS remains critical for determining their causal role in
nonclassical presentations of APECED. These findings empha-
size that, similar to classical APECED, nonclassical forms of the
disease can also exhibit marked phenotypic heterogeneity and
intrafamilial variability, even among sibling pairs.

Materials and methods

Research subjects

The patients were recruited following identification of a unique
AIRE variant in 2023-2025 at the Queensland Children’s Hos-
pital. This study was approved by the Sydney Local Health
District Royal Prince Alfred Hospital Zone Human Research
Ethics Committee and Research Governance Office, Royal Prince
Alfred Hospital, Camperdown, Australia (Protocols X16-0210/
LNR/16/RPAH/257 and X16-0210 and 2019/ETH06359, and Protocol
X20-0177 and 2020/ETH00998). Informed consent for functional
studies was obtained from the family. Permission for publication
was obtained from the family and Children’s Health Queensland
Hospital and Health Service Human Research Ethics Committee.

AIRE gene sequencing

Custom gene panel testing in I:1 was performed in a clinical
laboratory improvement amendments (CLIA)- and college of
American pathologists (CAP)-accredited laboratory (Blueprint
Genetics) on DNA extracted from peripheral blood, analyzing
14 hyper-/hypoparathyroidism-associated genes (AIRE, AP2SI,
CASR, CDC73, CDKNIA, CDKNIB, CDKN2B, CDKN2C, GCM2, GNAI1l,
MENTI, PTH, RET, and TRPV6) for sequence and small copy number
variants. Targeted gene panel was performed using a targeted
sequence capture method followed by next-generation sequenc-
ing of the amplified captured regions (Illumina). Alignment to
reference genome GRCh37 was performed, and annotated variants
were classified according to modified American College of Medical
Genetics and Genomics and the Association for Molecular Pa-
thology guidelines (36). Copy number analysis revealed no dele-
tions or duplications at the exon level within AIRE.

AutoAb analysis

Abs to tissue transglutaminase were assessed using Chemilu-
minescence (Werfen), and Abs to islet cell, thyroid peroxidase
and thyroglobulin, anti-tissue transglutaminase, glutamic acid
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decarboxylase, IA-2, intrinsic factor, and zinc transporter 8 were
assessed using enzyme-linked immunosorbent assays (Fadia
and Abacus diagnostics). The diagnosis of endocrinopathies was
established using laboratory results and clinical features as
previously described (3, 10, 11).

Detection of neutralizing autoAbs against type | IFNs
Neutralizing autoAbs against type I IFNs were detected in serum
of individuals with heterozygous AIRE variants using a previ-
ously described luciferase assay (25). HEK-293T cells were
transfected with a plasmid containing the firefly luciferase gene
under the control of the human ISRE promoter; the cells were
preincubated with serum 10% from healthy donors or in-
dividuals with heterozygous AIRE variants and then treated with
different amounts of type I IFNs. After 16 h, cells were lysed, and
luciferase levels were measured with the Dual-Luciferase Re-
porter 1000 Assay System (25).

Detection of anti-cytokine autoAbs by multiplex particle-
based assay

AutoAbs to IFNa, IFNp1, IFNw, IFN-y, IL-4, IL-6, IL-7, IL-10, IL-
12, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-27, MCP-1, TGFpB, TNF,
and GM-CSF were assessed using multiplex assay detection by
flow cytometry (24, 25). BD Cytometric Bead Array (BD CBA Flex
system) were coated with 10 pg of recombinant human cytokine
(IFN-a, IFN-B, IFN-w, IFN-y, IL-12p40, IL-17A, IL-23, IL-6, and
GM-CSF; Bio-Techne) according to the manufacturer’s in-
structions (558556; BD). After validation of the coupling, the
beads were incubated for 2 h with serum from healthy donors,
patients, or positive controls (1/1,000 dilution in PBS/2% BSA).
After washing twice with PBS/0.005% Tween, beads were in-
cubated with a PE goat anti-human IgG Ab (C3923-S083E;
Southern Biotech). Two washes in PBS/0.005% Tween were
then performed. Finally, the beads were acquired on an Agilent
Novocyte NovoSampler Pro, and data were analyzed using the
Flow]o software v.10.6.2 (Becton Dickinson) (24, 25).

Cell transfection and AIRE-regulated gene assays

The plasmid svPoly containing human WT AIRE was a kind gift
from Dr. Ismo Ulamanen (National Institute for Health and
Welfare, Department of Molecular Medicine, Biomedicum,
Helsinki, Finland). The C337F mutation was introduced by site-
directed mutagenesis (QuickChange II Site-Directed Mutagene-
sis Kit, Agilent Technologies) using the following primers (5'-3'):

Forward: 5'-GGACCTGGAGGTTCTCCAGCTGCCTG-3';

Reverse: 5'-CAGGCAGCTGGAGAACCTCCAGGTCC-3', designed
by the web-based program PrimerX (https://www.bioinformatics.
org/primerx) and verified by Sanger sequencing.

HEK293 cells were grown in Dulbecco’s Modified Eagle Me-
dium high glucose (Sigma-Aldrich) supplemented with 10%
(vol/vol) fetal bovine serum, 10 mM HEPES buffer, 1% (vol/vol)
nonessential amino acids (Lonza), 2 mM L-glutamine (Lonza),
100 U/ml penicillin, and 100 pg/ml streptomycin (Lonza) at 37°C
with 5% CO, in a humidified incubator. For transfection, cells
were plated at a density of 5 x 105 cells per well in a 6-well plate
and left in the humified incubator overnight. Samples (3.3 pg) of
the svPoly plasmids were added to a total volume of 157 pl
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supplemented RPMI 1640 (without penicillin or streptomycin),
mixed with 8.3 pl of Fugene HD transfection reagent (Promega
Corporation), and incubated for 5 min at room temperature.
After adding the mixture to the cells, they were incubated for
24 h before total RNA was extracted by RNeasy Mini Kit (QIA-
GEN) according to the manufacturers’ protocol, including in-
column DNase treatment. cDNA was prepared from 1 pg of total
RNA via a High Capacity RNA-to-cDNA Kit (Applied Biosystems).
HEK293 cells were transfected with either WT AIRE (100% WT),
mutant AIRE alone (100% mutant), or mixture of WT and mutant
AIRE plasmids (50% mutant). In all assays a negative control
(plasmid with no insert) was included.

Genes previously shown to be regulated by AIRE were ana-
lyzed by quantitative PCR using the following primers and
probes (Applied Biosystems): SI00A8 (Hs0037444264_gl), KRT14
(Hs00265033-m1), IGFLI (Hs01651089-g1), APOA4 (Hs00166636_
ml), and INS (Hs02741908_m1) (37, 38). Results were compared
to Beta2-microglobulin (B2M) (4333766) as endogenous control,
and the AIRE-independent genes CCHN (Hs00236923_ml) and
PRMT3 (Hs00411605_ml). Datasets of each primer pair were
normalized to B2M. The fold difference was calculated as
2 - {Ct((target gene) - Ct(B2M)) - (Ct(test sample) - Ct(calibrator
sample))}, with test samples defined as the different mutants of
AIRE and calibrator as WT AIRE. The results are shown as the
mean of three biological replicates, and results are expressed as
mean + SEM.

Data availability

The raw data supporting the conclusions of this article will be
made available by the corresponding author(s) upon reasonable
request.
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