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Five years ago, we launched the COVID Human Genetic Effort. Our goal was to explain the clinical variability among SARS-CoV-
2-exposed individuals by searching for monogenic inborn errors of immunity and their phenocopies. We deciphered the
pathogenesis of critical COVID-19 pneumonia and multisystem inflammatory syndrome in children in ~15% and 2% of cases,
respectively, thereby revealing general mechanisms of severe disease. We also defined neuro-COVID genetically and
immunologically in one child, while we delineated the immunological mechanisms of COVID-toes in healthy children and young
adults, paving the way for their genetic study. Understanding the human genetic and immunological basis of resistance to
SARS-CoV-2 infection, long COVID, and myocarditis after mRNA vaccination has been challenging, and investigations remain
ongoing. This work highlights the power of patient-based basic research and large-scale international collaborative efforts to
discover human genetic and immunological drivers of infectious disease phenotypes, with implications for the timely
development of new medical strategies before the next pandemic arrives.

Introduction underlying a great diversity of clinical manifestations: in some
The SARS-CoV-2 pandemic provided the unique opportunity to  individuals, the new virus caused acute, life-threatening mani-
study the human genetic and immunological determinants festations, while in most individuals, the virus provoked only
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Figure 1. CHGE world map. Our collaborators represent the following 85 countries: Algeria, Argentina, Australia, Austria, Bangladesh, Belarus, Belgium,
Bolivia, Brazil, Bulgaria, Burkina Faso, Cambodia, Cameroon, Canada, Chile, China, Colombia, Costa Rica, Croatia, Czech Republic, Denmark, Egypt, El
Salvador, Estonia, Finland, France, Germany, Greece, Greenland, Guatemala, Honduras, Hong Kong, Hungary, India, Iran, Israel, Italy, Japan, Jordan, Kazakhstan,
Kuwait, Latvia, Lebanon, Lithuania, Malaysia, Malta, Mexico, Morocco, Netherlands, New Zealand, Nigeria, North Macedonia, Norway, Pakistan, Panama,
Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Republic of Ireland, Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovakia, Slovenia, South
Africa, South Korea, Spain, Sri Lanka, Sweden, Switzerland, Taiwan, Thailand, Tunisia, Turkey, Ukraine, United Arab Emirates, the United Kingdom, the United

States, Uruguay, and Vietnam.

silent or benign manifestations. We launched the COVID Human
Genetic Effort (CHGE) in February 2020 to try to tackle this
global public health problem by means of forward genetics,
searching for monogenic inborn errors of immunity (IEI), or
their autoimmune or somatic phenocopies, in patients with
critical COVID-19 pneumonia (https://www.covidhge.com/)
(Fig. 1). Our hypothesis was that the virus is not by itself causal of
disease, nor of any specific clinical manifestations, but acts as an
environmental trigger in predisposed individuals, thereby re-
vealing human genetic and immunological causes and mecha-
nisms of disease (1).

Other consortia have applied genome-wide association study
(GWAS) approaches to COVID-19, assuming that common var-
iants in multiple genes, each exerting small effect sizes, work
together in combination to increase disease risk in any given
individual (2). However, the CHGE has taken an alternative
approach based upon our collective experience that a rare var-
iant can exert large effect sizes to cause extreme disease out-
comes in a given individual (3). Our strategy has been successful
because we have recruited patients with outlier presentations,
defined stringently by objective criteria, while also recruiting
internationally to expand sample sizes of these rare presentations,
thereby overcoming genetic heterogeneity.

Previous human monogenic studies of viral diseases had fo-
cused on endemic and seasonal infections, such as herpes sim-
plex encephalitis and influenza pneumonia, respectively (3, 4).
With the SARS-CoV-2 pandemic, we applied a similar forward
and reverse genetics approach, at the global population level. A
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major factor contributing to our success was that we studied a
primary viral infection, against which everyone was naive, at a
massive scale within a few months. Our approach led to the
identification of the pathogenesis of critical COVID-19 pneu-
monia in an estimated 15-20% of cases. The identification of
inborn errors of and autoantibodies to type I interferons (IFNs)
in these patients even provided a general mechanism of disease
(5, 6).

While we initially focused our studies on (1) hypoxemic critical
pneumonia and (2) multisystem inflammatory syndrome in chil-
dren (MIS-C), our early discoveries facilitated expansion of our
search to include other phenotypes: (3) viral encephalitis and
acute inflammation of the central or peripheral nervous system
(neuro-COVID), (4) virus-triggered chilblains (COVID-toes), (5)
long COVID, and (6) resistance to infection in highly exposed in-
dividuals. When mRNA vaccines became available, we added a
seventh enigma, postvaccine myocarditis (Fig. 2). For each prob-
lem, we followed the same approach, searching for single-gene IEI,
while characterizing the clinical and immunological features of
the corresponding patients, thereby deciphering genetic causes
and immunological mechanisms at the molecular and cellular
levels. Below we review the seven medical enigmas in detail, in-
cluding the advances we have made and ongoing studies.

Seven medical enigmas

1. Hypoxemic COVID-19 pneumonia

The biggest enigma surrounding SARS-CoV-2 is the variable
severity of respiratory infections among infected individuals,

Journal of Human Immunity
https://doi.org/10.70962/jhi.20250149

920z Ateniged 60 uo 1senb Aq ypd 617106202 1Ul/S60256 /61 1052028/ ¥/ 1 4pd-8lome/yl/Bio sseidnyj/:dny woy papeojumoq

20f19


https://www.covidhge.com/

Life-threatening breakthrough
COVID-19 pneumonia

Multisystem inflammatory
syndrome in

’ Hypoxemic COVID-19
children (MIS-C)

pneumonia

responses
OAS1, OAS2, or RNASEL

Impaired
antiviral
immunity

Adverse events to
vaccine
(including myocarditis)

Long COVID

131

Resistance to
Infection

Pandemic-associated
chilblains (COVID-Toes)

©

Genetic etiology TBD

i,

Decreased Production of

TLRS3, TLR7, IRAK4, DBR1

Excessive

Genetic etiology TBD

BTNL8

type I IFN MYD88, UNC93B1, TBK1,

TICAM1, IRF3, IRF7

IFNAR1, IFNAR2, STAT2,
TYK2

Decreased
Responsiveness to type |
IFN

High-titer, neutralizing auto-
antibody to type | IFN

type | IFN
activity

Genetic etiology TBD Genetic

etiology TBD

Figure 2. Etiologies are unknown for four of the seven enigmas: resistance to infection (and silent infection), pandemic chilblains (although a
mechanism of disease is documented), long COVID, and mRNA vaccine-induced myocarditis. There are etiologies for the other three enigmas. Hypoxemic
COVID-19 pneumonia is explained in 15-20% of cases by inborn errors of or autoantibodies against type | IFNs. MIS-C is explained in 1-2% of cases by other

inborn errors. Only one patient with neuro-COVID is understood etiologically.

which ranges from asymptomatic to life-threatening. Based
upon prepandemic work demonstrating that monogenic defects
can underlie a narrow susceptibility to other respiratory viral
diseases, we hypothesized that monogenic defects might also
underlie life-threatening COVID-19 pneumonia (1). Our first
breakthrough was the discovery of inborn errors in TLR3-
dependent type I IFN production and response in patients with
hypoxemic COVID-19 pneumonia, which showed that critical
COVID-19 and influenza pneumonia can indeed be allelic (7).
Thereafter, we and others identified X-linked recessive TLR7
deficiency, which underlies hypoxemic COVID-19 pneumonia in
males (8, 9, 10, 11, 12). Inborn errors in 13 genes, which either
induce type I IFNs (TLR3, TLR7, IRAK4, MYD88, UNC93Bl, TBKI,
TICAML, IRF3, IRF7) or govern responses to type I IFNs (IFNARI,
IFNAR2, STAT2, TYK2), were subsequently demonstrated to
underlie critical COVID-19 pneumonia, often in young or
middle-aged patients (2,7, 9, 13, 14, 15, 16, 17). The inborn errors
identified in these patients are rare, except for a dominant
negative, hypomorphic IFNARI variant (p.Pro335del), which is
common in Southern China (minor allele frequency [MAF]~2%)
(13,18, 19, 20).

Strikingly, we discovered autoantibodies (mostly IgG) neu-
tralizing type I IFNs in 15% of patients with critical COVID-19
pneumonia and 20% of patients who died from COVID-19 (21, 22,
23, 24, 25). These autoantibodies preexist infection and are
common in the general population sampled prior to 2019 (0.2-
1%), where they increase with age, reaching almost 7% in people
over 80 years old (22). Together, these two parallel and com-
plementary discoveries indicated that human type I IFN immu-
nity is indispensable for defense against SARS-CoV-2 infection in
the lung (6). Multiple large-scale GWAS have identified over 50
genomic regions containing common variants that are associated
with COVID-19 severity with modest effect sizes (26, 27, 28, 29).
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The first reported and strongest signal (odds ratio [OR] of 1.6) for
severe pneumonia came from a haplotype inherited from Ne-
anderthals (2, 30). Interestingly, seven loci seemingly associated
with COVID-19 severity were possibly linked to the type I IFN
pathway, IFNAR2, TYK2, JAKI, OASI, IRF1, IFNAIO, and DOCK2 (2,
26, 29).

Genetic defects that underlie COVID-19 pneumonia, as well as
auto-Ab-IFN, also underlie other severe viral diseases. These
include encephalitis triggered by herpes simplex virus, Japanese
encephalitis virus, tick-borne encephalitis virus, West Nile virus
(WNV), or enterovirus (TLR3, UNC93BI, TBKI, TICAMI, IRF3,
IFNARI, and auto-Ab-IFN) (20, 31, 32, 33, 34, 35, 36, 37, 38);
influenza pneumonia (TLR3, IRF7, STAT2, and auto-Ab-IFN)
(15, 39, 40, 41); adverse reactions to live-attenuated viral
vaccines (IFNARI, IFNAR2, STAT2, and auto-Ab-IFN) (18, 19, 20,
42, 43, 44); and Middle East respiratory syndrome pneumonia
(auto-Ab-IFN) (45). Incomplete penetrance for any given viral
disease is apparently common in patients with defective type I
IFN immunity, as almost all patients reported only had an iso-
lated, single episode of severe infection, despite their previous
exposure to several of the above-listed viruses. Incomplete
penetrance and variable expressivity may result from different
levels of molecular redundancies, including contributions by
other sensors such as MDAS and RIG-I, which like TLR3 and TLR7
are also capable of sensing the same viruses; the type III IFN
pathway, whose downstream antiviral responses overlap with the
type I IFN pathway; or adaptive immunity including virus-
specific or cross-reactive antibody responses due to prior viral
exposures or vaccination. Mutations in IFN-stimulated genes
(ISGs) may reveal more specific phenotypes than mutations in
IFN-inducing genes or the core IFN pathway. These findings may
also help stratify the patients who will most benefit from IFN
therapy for COVID or other viral diseases.
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2. MIS-C

MIS-C is an inflammatory disease triggered by SARS-CoV-2 in-
fection that, for unknown reasons, predominantly occurs in
children, although it has very rarely been reported in adults
(referred to as MIS-A) (46, 47, 48). MIS-C typically occurs 4 wk
after benign infection. When it initially emerged in 2020, it af-
fected children with a median age of 8 to 9 years, and had an
estimated prevalence of about 1-2 per 10,000 infected children
(49, 50, 51, 52). The dramatic decrease in the number of MIS-C
cases since mid-2022 suggests that both vaccine and previous
infection protect from MIS-C (53, 54). The new viral strains
themselves may be less pathogenic in unvaccinated children (55,
56). Children with MIS-C presented with fever, rash, abdominal
pain, myocarditis, and other clinical features reminiscent of
a classic pediatric inflammatory condition, Kawasaki disease
(KD), including lymphadenopathy, coronary aneurysm, and el-
evated markers of inflammation (48, 57, 58, 59, 60, 61); hence,
initial reports described MIS-C as an atypical form of KD. Blood
markers of cardiovascular endothelial injury (troponin, B-type
natriuretic peptide) and gastrointestinal epithelial injury (LPS-
binding protein, soluble CD14) are common (62). Various leu-
kocyte subsets are also affected, including sustained monocyte
activation as suggested by the high levels of proinflammatory
markers, including ferritin, IL-6, IL-10, IL-18, MCP1 (CCL2), IL-
1RA, and TNF, as well as neutrophilia. In addition, increased type
Il IFN (IFN-y) signaling, not necessarily specific to monocyte
activation, is prevalent during the early phase of disease (58, 62,
63, 64, 65, 66, 67). Finally, a unique immunological phenotype in
MIS-C (detected in up to ~75% of patients) involves a polyclonal
expansion of VB21.3 on CD4* and CD8* T cells (62, 64, 66, 68, 69),
suggestive of a viral superantigen driving a specific activation
and expansion of T cells. In this multitude of molecular
and cellular abnormalities, the root cause of MIS-C was
enigmatic (70).

Searching for monogenic IEI underlying MIS-C via an unbi-
ased genome-wide approach, in 2023 the CHGE reported the
surprising finding of autosomal recessive deficiencies of the
OAS-RNase L pathway in five children with biallelic mutations
in OASI, OAS2, or RNASEL, representing ~1% of the large inter-
national cohort studied (71). The type I IFN-inducible dsRNA-
sensing proteins OAS1 and OAS2 normally generate 2'-5'-linked
oligoadenylates (2-5A) to activate the single-stranded RNA
(ssRNA)-degrading RNase L, which is particularly active in
mononuclear phagocytes. The OAS-RNase L pathway has been
studied for years as an antiviral pathway in vitro and in mice
in vivo (72, 73, 74, 75). However, in humans under natural con-
ditions of infection by SARS-CoV-2, deficiency of this pathway
resulted in acute postinfectious systemic hyperinflammation.
Monocytic cell lines, primary monocytes, and monocyte-derived
dendritic cells with genetic deficiencies of OAS1, OAS2, or
RNase L produce excessive amounts of inflammatory cytokines
in response to intracellular dsRNA or SARS-CoV-2. Conversely,
and consistent with the lack of pneumonia in patients with
MIS-C, a lung epithelial cell line and fibroblasts defective for
this pathway restrict SARS-CoV-2 normally, unlike IFNARI-
deficient cells from patients prone to hypoxemic pneumonia
without MIS-C. Single-gene recessive inborn errors of the OAS-
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RNase L pathway unleash the production of SARS-CoV-2-
triggered inflammatory cytokines by mononuclear phagocytes,
thereby underlying MIS-C. These findings provide mechanistic
underpinnings to the clinically driven treatment algorithms for
MIS-C, and may further refine current guidelines as additional
discoveries are made.

Subsequently, another study using a gene burden analysis
identified enrichment of rare variants in BTNLS8, a gene regu-
lating intestinal y8T cells, in MIS-C patients (76). Approximately
2% of the MIS-C cohort tested carried rare predicted deleterious
variants of BTNL8. These variants contributed to a fourfold in-
creased odds of presenting with MIS-C. The prominent site of
BTNLS8 expression is the gut epithelium, where it regulates Vy4*
Y8T cells critical for gut barrier integrity. Given the known as-
sociation of BTNL8 with inflammatory bowel disease severity, it
is believed that BTNL8 may play a role in regulating intestinal
inflammation seen in MIS-C. Although intestinal tissue from
MIS-C patients was unavailable, the association between BTNL8
variants and serum markers of increased gut permeability was
noted. BTNLS is thus thought to regulate intestinal inflamma-
tion upon SARS-CoV-2 infection, such that those with impaired
BTNL8 function are unable to resolve intestinal inflammation
that subsequently leads to systemic inflammation. Overall, dis-
coveries of IEI in MIS-C have highlighted unchecked mononu-
clear phagocyte-driven inflammation (OAS-RNase L pathway)
and intestinal inflammation (BTNLS) as key features of MIS-C
pathogenesis. Many questions remain, including those sur-
rounding the exact SARS-CoV-2-related RNA products trigger-
ing monocyte activation and the clonal activation and expansion
of VB21.3* T cells. A recent study suggested that EBV reactivation
contributes to the T cell expansion in MIS-C (77). Further in-
vestigation is warranted for the remaining majority of patients
whose genetic and immunological cause of MIS-C remains un-
known. MIS-A remains entirely enigmatic; it may represent a
forme fruste of MIS-C in some patients, and a distinct hyper-
inflammatory syndrome with unique molecular drivers in oth-
ers. Other pediatric inflammatory disorders like KD may share
similar pathogenic mechanisms with MIS-C, which could be
clarified using similar monogenic investigatory approaches.

3. Neuro-COVID

SARS-CoV-2 is primarily a respiratory virus, but various neu-
rological manifestations have been observed in infected in-
dividuals, either accompanying acute COVID-19 pneumonia or
presenting as isolated neurological conditions. Previous papers
describing “neuro-COVID” mostly focused on the description
of different neurological illnesses, attesting to the neuro-
invasiveness of the virus, or consequences of SARS-CoV-2-
triggered cytokine storm and systemic inflammation (78, 79).
These SARS-CoV-2-related neurological conditions can be
grouped into those affecting the central nervous system (CNS),
including meningoencephalitis, encephalopathy, and acute
demyelinating encephalomyelitis, and those affecting the pe-
ripheral nervous system in the form of the acute flaccid paralysis
of Guillain-Barré syndrome (GBS) or various myopathies (80, 81).
Neuro-COVID may also be categorized depending on the temporal
association with SARS-CoV-2 infection into acute, subacute, or

Journal of Human Immunity
https://doi.org/10.70962/jhi.20250149

920z Ateniged 60 uo 1senb Aq ypd 617106202 1Ul/S60256 /61 1052028/ ¥/ 1 4pd-8lome/yl/Bio sseidnyj/:dny woy papeojumoq

4 0f 19



long-term neurological presentations, such as encephalitis,
GBS, or long COVID, respectively (78). Moreover, COVID-19-
associated coagulopathy, cerebral vasculopathy, and micro-
thrombosis may also lead to brain inflammation and pathol-
ogy manifesting as neurological symptoms and stroke (78),
which is not considered within the group of neuro-COVID
described here.

Intriguingly, SARS-CoV-2 has been only rarely identified in
the cerebrospinal fluid during acute COVID-19 or by postmortem
pathology examination of brain tissue from humans succumbing
to COVID-19, leaving it unclear to what extent the virus pro-
ductively replicates in neurons or other cells of the CNS in vivo
(79, 82). CNS invasion has been suggested to occur through viral
entry at the level of the olfactory bulb, the vascular endothelium,
and choroid plexus, or by migration of SARS-CoV-2-infected
monocytic cells across the blood-brain barrier like a Trojan
horse (83). However, SARS-CoV-2 RNA and nucleocapsid pro-
tein have been demonstrated in human neural progenitor cells
and human brain organoids infected in vitro, suggesting SARS-
CoV-2 permissiveness and productive replication in these cells
(82, 84). In contrast, postmortem brain histopathology sections
from patients revealed meningeal inflammation, neuronal loss,
and hypoxia/ischemia as prominent features, with only low
levels of virus detectable and in only a minority of cases (79, 82).
Despite the various neurological clinical presentations suggest-
ing CNS involvement, and numerous studies on single patients
or small groups of patients, key aspects of SARS-CoV-2 neuro-
invasion, neurotropism, and neuropathogenesis remain poorly
understood (79, 82, 83, 84).

The research of human monogenic etiologies of severe in-
fection was previously successful at dissecting the pathogenesis
of isolated viral encephalitis, especially triggered by herpes
simplex virus 1 (HSV-1), but also other viruses including vari-
cella zoster virus and influenza virus (70, 85). Taking this same
approach, a study reported a recessive DBRI1 defect underlying
isolated SARS-CoV-2 brainstem encephalitis in a 14-year-old boy
of Syrian origin (86). The patient’s magnetic resonance imaging
showed encephalitic lesions in the pons, mesencephalon, and
cerebellum, and evidence of increased intracranial pressure.
Genetic evaluation revealed that the patient was homozygous for
aloss-of-function variant in the RNA debranching enzyme DBRI,
a hypomorphic and pathogenic variant previously reported to
underlie brainstem encephalitis by HSV-1in other patients (87).
Fibroblasts from the patient showed low levels of DBRI and ac-
cumulation of RNA lariats. Moreover, human induced pluripo-
tent stem cell (hPSC)-derived hindbrain neurons with this DBR1
genotype were highly susceptible to SARS-CoV-2 infection.
Likewise, neurons derived from healthy control hPSCs and
exogenously challenged with RNA lariats showed increased
viral susceptibility. Finally, reconstitution of wild-type DBRI1
expression in patient fibroblasts and hPSC-derived hindbrain
neurons rescued the RNA lariat accumulation phenotype.
This paper is the first account of a distinctive IEI associated
with a neuro-COVID phenotype, in this case, rare acute
brainstem encephalitis. Future search for single-gene IEI
underlying encephalitis and other neuro-COVID phenotypes
will clarify the pathophysiological principles of neurological
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disease manifestations triggered by SARS-CoV-2. Such stud-
ies are likely to also provide insights relevant to other neu-
roinfections with human pathogenic neurotropic viruses.

4. Pandemic-associated chilblains (COVID-toes)

The sudden and unprecedented global outbreak of chilblain le-
sions, which paralleled early waves of SARS-CoV-2 infections,
long remained unexplained. Chilblains are tender, inflammatory
papules that appear on acral sites. Although first described in
1888 (88), only recent evidence has linked some cases to exces-
sive type I IFN responses. Chilblains can occur in the context of
chronic type I IFN-driven disorders such as the monogenic in-
terferonopathies (89, 90, 91) and systemic lupus erythematosus
(88, 92, 93). However, when affecting otherwise healthy in-
dividuals, they are considered primary and idiopathic. Before
the onset of the pandemic, primary forms were rare (94) and
typically occurred in clusters during winter months (95, 96, 97),
coinciding with increased circulation of ssRNA respiratory vi-
ruses such as common coronaviruses, RSV, and influenza virus
(98), when the ambient temperature was colder. However, a
direct connection to viral triggers had neither been firmly es-
tablished nor strongly suspected before 2020.

During the early months of the COVID-19 pandemic, the surge
in chilblain cases among otherwise healthy, relatively young
individuals, known as pandemic-associated chilblains (PC) or
so-called “COVID-toes,” garnered considerable scientific and
public interest (94, 99, 100, 101, 102). The temporal clustering of
PC and COVID-19 cases suggested a causal link between SARS-
CoV-2 and chilblains (103, 104, 105, 106, 107). However, most
patients tested negative for SARS-CoV-2 by nasopharyngeal PCR
at the time of chilblain onset and lacked detectable adaptive
responses (overall IgG seroconversion <10%) (108, 109, 110,
111, 112). While some authors attributed PC outbreaks to behav-
ioral changes during lockdown (109, 113, 114), accumulating
evidence supports the hypothesis of an innate immune phe-
nomenon triggered by early SARS-CoV-2 variants (115, 116, 117,
118, 119, 120). Epidemiologically, PC onset was correlated with
SARS-CoV-2 circulation (94, 97) and linked to household exposure
(121, 122). Virologically, evidence of an abortive SARS-CoV-2 in-
fection was supported by detection of SARS-CoV-2 RNA debris in
PC samples without ongoing viral replication (123). Immuno-
logically, patients with PC displayed high levels of systemic and
local type I IFN activity (117, 120, 123, 124), often accompanied
by transient IgA responses but rarely IgG seroconversion (117,
120, 125), suggesting viral exposure and a robust innate anti-
viral activation with limited adaptive priming.

Consistent with the essential role of type I IFN in protective
immunity against SARS-CoV-2 (7, 9, 21, 22) and the deleterious
effects of excessive type I IFN activity (126), a leading mecha-
nistic hypothesis posits that individuals with PC are primed to
mount an enhanced type I IFN response to SARS-CoV-2, pro-
moting early viral clearance and the subsequent development of
chilblains. Indeed, patients’ leukocytes produce abnormally high
levels of IFN-I when stimulated with ssSRNA viruses, especially
SARS-CoV-2, but not DNA viruses (124). Moreover, patients’
plasmacytoid dendritic cells (pDCs) display cell-intrinsic hy-
perresponsiveness to TLR7 stimulation (124), in contrast to pDCs
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from TLR7-deficient patients who are prone to critical COVID-19
pneumonia. Chilblains result from the infiltration of activated
pDCs in acral skin (123, 124), with type I IFN-mediated inflam-
mation at acral sites, a response likely augmented by cold-
induced vasoconstriction and endothelial damage. Hence, PC
might signal enhanced TLR7 activity, which confers strong—
often sterilizing—innate immunity to SARS-CoV-2 infection,
limiting antigen availability for adaptive priming. In the aggre-
gate, these results offer a mechanistic explanation for both
strong temporal association of primary chilblains during the
early pandemic and the absence of conventional markers of
adaptive responses in affected individuals.

The COVID-19 pandemic provided an opportunity to revisit
the pathogenesis of primary chilblains, challenging the con-
ventional belief that “idiopathic” chilblains result solely from
exposure to cold, and suggesting that chilblains may be pri-
marily triggered by immune responses to ssRNA viruses, de-
veloping as a trade-off from excessive but transient type I IFN
responses in predisposed individuals. The molecular and genetic
basis of enhanced TLR7 responses to SARS-CoV-2 in patients
with chilblains has yet to be elucidated, although TLR7 hyper-
activation is known to induce other autoimmune disorders in-
cluding lupus, of which chilblains are a common cutaneous
manifestation (127).

Additional viruses that could also trigger primary chil-
blains remain to be discovered. The observation of multiple
family members developing PC simultaneously supports a
genetic predisposition with a dominant inheritance pattern
(100, 118, 128). Through enrollment of a dedicated cohort
with chilblains, the CHGE continues to investigate whether
these affected individuals carry specific genetic variants
that enhance TLR7-mediated immunity to SARS-CoV-2 and
other ssRNA viruses.

5. Long COVID

The severity of acute infections varies as a consequence of host
genetics and immune function with different manifestations
across age groups (129). Postinfectious diseases represent an-
other form of pathology triggered by infections in individuals
with likely predisposing genetic and environmental character-
istics. Postinfectious syndromes have previously been reported
following infections with dengue viruses (130), Ebola virus (131),
chikungunya (132), WNV (133), Epstein-Barr virus (134), influ-
enza (135), and SARS (136), but mechanisms of these diseases are
poorly understood. Genetic etiologies have not been reported.
SARS-CoV-2 infections and their associated postinfectious dis-
ease, long COVID, offer a unique opportunity for unraveling the
pathogenic process and possible shared mechanisms with other
postinfectious diseases given the global spread, across diverse
populations with a novel virus. The diagnostic criteria for long
COVID are vague, and consequently, the incidence rates vary
widely. To mitigate this uncertainty, we have decided to focus on
the most severe cases with objective measures of disease (137).
The most frequent symptoms are fatigue, dysautonomia, cog-
nitive impairments, microvascular dysfunction, and fevers with
minimal evidence of systemic inflammation using clinical
chemistry measurements (137).
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Multiple lines of evidence point toward viral persistence,
suggestive of chronic infection, in patients with long COVID. In
some individuals, viral antigens (138) and antisense RNA (139)
are measurable in plasma, while most patients show elevated
levels of SARS-CoV-2-specific antibodies (140, Preprint) and
SARS-CoV-2-specific B cells undergoing somatic hypermutation
for many months following initial SARS-CoV-2 infection (141).
SARS-CoV-2-specific T cells have been described as exhausted,
while our own data indicate a restrained expansion of such cells
(140, Preprint). The latter suggests maladaptive disease tolerance
as an underlying mechanism of disease, similar to previous re-
sults in the related condition, myalgic encephalomyelitis (142).
Striking sex differences in incidence in postinfectious diseases
are seen in general and long COVID in particular, with 75-80% of
individuals being females of reproductive age (140, Preprint).
Hence, we speculate that sex differences in immune system
composition and function, including the role of sex hormones as
dynamic modulators of female-specific traits during reproduc-
tive age, may be important for development of long COVID (143).
It is intriguing that women with long COVID have autoanti-
bodies to nonimmune targets (144, Preprint). While this provides
a glimpse into immunological aberrancies in some persons living
with long COVID, the underlying molecular and genetic bases
remain enigmatic.

Beyond the significant role of the immune system in long
COVID, both during and after the acute phase, emerging evi-
dence suggests that disruption of the serotonin system might
contribute to the development of post-SARS-CoV-2 sequelae
(145). The serotonin system may be linked to type I IFN activity,
which could contribute to serotonin depletion through several
mechanisms: (1) reducing tryptophan uptake, the precursor to
serotonin, via inflammation in the gut, (2) hyperactivating pla-
telets and diminishing their serotonin storage, and (3) increas-
ing serotonin breakdown via monoamine oxidase. Studies of
serotonin-related phenotypes in patients with IEI of type I IFN
are warranted. Collectively, these processes result in peripheral
serotonin deficiency, which impairs vagal signaling crucial for
cognitive functions, especially memory. This deficiency also
contributes to chronic inflammation, hypercoagulability, and
autonomic dysfunction.

Given the highly variable presentation and severity of long
COVID cases, the CHGE is focusing on outlier phenotypes, sim-
ilar to our approach taken for hypoxemia pneumonia and MIS-C.
Using measures of disease such as autonomic dysfunction, mi-
crovascular dysfunction, and/or persistent viral antigens, we
have already enrolled over 300 patients with the most severe
forms of long COVID and objective markers of disease for human
genetic studies. We will test models of genetic homogeneity and
heterogeneity, focusing on rare genotypes.

6. Silent infections and resistance to infection

After exposure to SARS-CoV-2, many individuals remain clini-
cally asymptomatic. Some of these remain PCR test-negative and
seronegative and appear to be resistant to infection. “Silent or
unapparent infection” is a long-standing observation by Charles
Nicolle during the “Golden Age of Microbiology.” This phenom-
enon is seen with innumerable infections, but despite advances
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in understanding susceptibility to severe disease, resistance to
infection or asymptomatic infection remains largely enigmatic.
Among individuals who demonstrate positive PCR tests and/
or seroconversion, up to 40% remain clinically silent (146,
147, 148). In many of these individuals, robust T cell re-
sponses develop, despite a complete lack of detectable anti-
bodies (148). An association between the HLA-B*15:01 allele
and silent SARS-CoV-2 infection has been suggested (149,
150). Preexisting cross-protective T cell-mediated immu-
nity is a potential mechanism underlying abortive, sero-
negative SARS-CoV-2 infection (151), as well as silent infections
(26, 149, 150). However, the CHGE failed to replicate any HLA
allele association with asymptomatic SARS-CoV-2 infection in
two large cohorts (149), in line with the modest impact of HLA
variation on severe COVID-19 (26). In addition, robust T cell
responses are found in both asymptomatic and symptomatic
individuals (148), indicating that their presence per se does not
explain silent infections. Thus, other mechanisms beyond
T cells are likely to be involved. Monitoring of PCR-negative
and seronegative healthcare workers has revealed preex-
isting cross-protective T cell-mediated immunity as a potential
mechanism underlying abortive, seronegative SARS-CoV-2
infection (151). In addition to T cells, the contribution of innate
immune responses to silent infections is poorly under-
stood. Early type III IFN production can prevent viral rep-
lication and spread (152), and it has been suggested that early
type I IFN production and NK cell activation can prevent the
development of severe disease (153, 154, 155, 156). The host
determinants underlying silent infections, including the pos-
sible contribution of innate immune responses, remain to be
discovered.

Human genetic correlates of protection against infection
have emerged from GWAS (26). A cis-expression quantitative
traitlocus in ACE2 impacts infection susceptibility (OR + 0.70)
by reducing ACE2 expression (26, 157). The O allele of the ABO
locus has a small (OR + 0.90) effect on susceptibility to in-
fection, but the mechanism is unclear (26). For other pro-
tective alleles (26), the causal variants remain unknown.
Testing the hypothesis that monogenic inborn variants confer
natural resistance to SARS-CoV-2 infection, COVID HGE is
analyzing >800 individuals who are long-term-resistant to
SARS-CoV-2 infection (158). In line with the GWAS results
(26), no associations of classical HLA alleles were found
for resisters (149). Genome-wide analyses and molecular
studies are ongoing. The proportion of humans naturally
resistant to SARS-CoV-2 infection sensu stricto (being
those individuals not undergoing abortive or silent in-
fections) is unknown, and the human genetic determinants
of resistance remain uncharted. Historical examples of
inborn resistance to infection with other pathogens (e.g.,
HIV, norovirus, and Plasmodium vivax) (158) provide a road
map for testing the hypothesis of monogenic resistance to
infection with SARS-CoV-2. The genetic investigation of
potential pan-coronavirus host resistance mechanisms
(159) in individuals who are naturally resistant to SARS-
CoV-2 infection deserves ongoing attention in the context
of preparedness for future pandemics.

Andreakos et al.
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7. Mild and severe adverse reactions to RNA vaccines
Understanding the basic biology behind severe adverse reaction
to the RNA vaccine emerged as a major enigma with public
health implications. Clinical trials for COVID-19 vaccines re-
ported interindividual differences for common side effects such
as fever in the days following vaccination (160). Additionally,
after hundreds of millions of people had been vaccinated
worldwide, vaccination was conclusively linked to a few rare
adverse events, particularly myocarditis following COVID-19
mRNA vaccination (161) and vaccine-induced immune throm-
bocytopenia and thrombosis (VITT) following the adenoviral-
vector vaccines (162). Deciphering the genetic and immunological
basis of adverse reactions to COVID-19 vaccines could provide
insights into how the new type of mRNA vaccine works in
humans. We first discovered that the HLA-A*03:01 allele was
associated with fever, chills, and stronger side effects from
the Pfizer-BioNTech mRNA vaccine (163). Later, HLA-A*03
individuals were found to have the highest increase in
S-reactive CD8" T cells following the second dose of vaccination
due to enhanced antigen presentation (164). These results high-
light how specific HLA alleles can modulate the response to mRNA
vaccines. Possible HLA associations with vaccine-associated myo-
carditis were reported but were not statistically significant due to
the low number of cases and controls (165). Epidemiological
studies showed that vaccine-associated myocarditis affects about
1 in 100,000 vaccinees. It is more common in adolescent and
young adult males, and after the second dose when the prevalence
may reach 35 per 100,000 (166). Results from immune profiling of
vaccine-associated myocarditis cases were consistent with a
cytokine-mediated pathology, as opposed to an autoimmune
myocarditis or a hypersensitivity reaction (167). However,
why only a few individuals develop this abnormal immune
response following vaccination remains unknown.

To uncover a potential genetic cause for vaccine-associated
myocarditis (168), the CHGE has included and sequenced cases of
vaccine-associated myocarditis if they meet the “Probable myo-
carditis” definition of the Brighton collaboration and are diag-
nosed within 2 wk of immunization. Comparing the genetic results
from this ongoing study with cohorts of SARS-CoV-2 infection-
associated myocarditis has the added potential to help pinpoint
whether the immune trigger was the antigen (the spike pro-
tein), the adjuvant (the lipid nanoparticle), or the modified
mRNA itself. While the scientific community has focused on
myocarditis because it is the most common adverse event to
mRNA vaccines, future work aims at understanding the cause
of other rare adverse events to mRNA and other types of
COVID-19 vaccines. It has been shown that VITT is mediated by
platelet-activating antibodies against platelet factor 4 (169).
However, why a few individuals have these antibodies remains
unknown. GBS is another adverse event, whose pathogenic
mechanism is not understood. Rather than focus on individual
types of adverse effects, an alternative strategy would be to aim
at all adverse events following vaccination in population-wide
cohorts at once. This could be done by screening for a wide
array of autoantibodies, as has been done in a recent Swedish
study of all individuals with adverse events (170), combined
with the search for rare genetic lesions affecting the same
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pathway. Future research to better understanding these vac-
cine reactions is of high importance and relevance if mRNA
vaccines are to be applied to elicit protection against other vi-
ruses and in other contexts such as for cancer vaccines.

Beyond the seven enigmas

While the initial effort of the CHGE focused on COVID-19 in
unvaccinated people, and then expanded its effort to tackle other
enigmas, it also studied “breakthrough” COVID-19 pneumonia in
vaccinated people. Moreover, some discoveries appeared to be
generalizable to other viruses. Indeed, the efforts to understand
and prevent COVID-19 were fruitful beyond COVID-19, as neatly
illustrated by the role of auto-Abs against type IIFN in other viral
diseases and the development of RNA vaccines for other viral
infections.

1. Life-threatening breakthrough COVID-19 pneumonia
While the seven aforementioned enigmas typically dealt with
clinical phenotypes in unvaccinated individuals, RNA vaccines
changed the course of the pandemic. “Breakthrough infection” is
defined by SARS-CoV-2 infection occurring after a well-
conducted COVID-19 vaccine series (171, 172). Most break-
through cases are asymptomatic or mild (171), but in rare cases,
they are severe, critical, or even fatal (173, 174). Breakthrough
COVID-19 pneumonia is thematically related to COVID-19
pneumonia in unvaccinated individuals. As such, it cannot be
seen as a distinctive enigma, although it deserves studies of its
own. Breakthrough infection, regardless of its severity, can be of
at least four causes: (1) primary or secondary vaccine failure (for
example, in patients [including inherited and acquired defi-
ciencies of adaptive immunity]), (2) waning antibody response
to the vaccine (especially in aging individuals or those unable to
sustain titers over time), (3) viral escape or viral resistance
(leading to incomplete protection from viral genotypes with
vaccine-resilient mutations [such as Delta or Omicron], which
can result in insufficient viral neutralization in vivo), and (4)
host susceptibility to severe infections that is so high that it
overcomes a vaccine protection that is usually adequate (6).
Patients with IEI affecting the production of or response to type I
IFNs, or both, are prone to critical COVID-19 pneumonia (7, 175,
176). These latter findings established the crucial role of type I
IFNs in fending off SARS-CoV-2 (6). Despite the efficacy of RNA
vaccines (160, 177), the human genetic and immunological de-
terminants of critical breakthrough cases remained unclear,
especially in patients with normal antibody responses to the
vaccine. With the CHGE (https://www.covidhge.com), we re-
cruited and tested patients with breakthrough hypoxemic
COVID-19 pneumonia. We hypothesized that some of these
breakthrough cases of life-threatening COVID-19 pneumonia
might have an adequate antibody response to the vaccine yet
may harbor auto-Abs to type I IFNs leading to severe infection.
We thus tested 42 individuals with no known deficiency of
B cell immunity and normal antibody responses to two doses of
an mRNA vaccine and found that 10 (24%) patients (aged 43-86
years) had auto-Abs neutralizing type I IFNs (178). For most
patients with type I IFN defects (either genetic or autoimmune),
protection conferred by COVID-19 mRNA vaccination is probably
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sufficient, yet additional boosters might be needed in some in-
dividuals who neutralize high concentrations of multiple type I
IFNs. We know of no other reported risk factor that leads to se-
vere breakthrough infection in individuals who mount adequate
Ab responses. Specific vaccination or preventive strategies could
be undertaken in such at-risk individuals, such as early treat-
ments with antivirals and/or IFNs (179, 180, 181, 182), or addi-
tional vaccine boosters.

2. Auto-Abs against type I IFNs

Auto-Abs neutralizing type I IFNs were first described in 1981 in
a patient previously treated with human IFN-B (183). Soon after,
auto-Abs neutralizing IFN-a were detected in a patient with
disseminated varicella zoster disease prior to any treatment with
type I IFNs (184, 185). Nevertheless, for almost 40 years these
auto-Abs were largely thought to be uncommon, induced by type
I IFN treatment or restricted to rare conditions, and clinically
silent with respect to viral infections (186, 187, 188). During the
pandemic, the study of cohorts of thousands of patients facili-
tated the identification in ~20% of COVID-19 pneumonia fatal
cases of preexisting circulating auto-Abs neutralizing the 12
types of IFN-a (encoded by 13 loci) and/or IFN-w and/or, less
frequently, IFN-B (6, 21, 22, 23, 24, 178) (Table 1). This finding
has been replicated in >30 independent cohorts worldwide
(23, 24,189,190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221) and, later, in ~10% of cases
of pediatric hospitalizations for COVID-19 pneumonia (24). In-
terestingly, there is a male bias in individuals harboring such
auto-Abs, especially in the elderly (21, 22, 23). These discoveries
were soon followed by the identification of the auto-Abs in ~5%
of cases of critical influenza pneumonia (41) and ~25% of hospi-
talizations for Middle East respiratory syndrome (45), two res-
piratory diseases with pandemic potential caused by RNA viruses,
and in patients with severe disease caused by five flaviviruses,
including ~35% of cases of life-threatening adverse reactions to
yellow fever live-attenuated vaccine-17D strain (44, 222), ~40% of
cases of WNV encephalitis (38), ~10% of severe cases of tick-borne
encephalitis virus disease (TBEV) (37), and severe Powassan virus
(POWV) and Usutu virus (USUV) disease, as well as severe disease
caused by Ross River virus (RRV), an alphavirus (223) (Table 1).
These auto-Abs also increase the risk of skin infection by HSV-1
and VZV (189, 224, 225, 226). Conversely, in a cohort of >35,000
unselected individuals aged 0-90 years from the general popu-
lation, they were found to be uncommon under the age of 65 years
(prevalence of ~0.3-1%), with a sharp increase in their prevalence
after the age of 70 years (~4-7%), particularly in men, a finding
that can explain part of the age- and sex-dependent risk of life-
threatening COVID-19 (6, 22, 23).

These auto-Abs neutralize the antiviral activity of type I IFNs
in vitro (21, 37, 38, 41, 44) by preventing the induction of ISGs
(22, 199, 227), thus clinically phenocopying inborn errors of type
I IFN immunity due to autosomal recessive IFNAR1 or IFNAR2
deficiency (6, 70, 228). The auto-Abs confer increased risk
whose magnitude depends on the number and concentrations of
type I IFNs neutralized (22). The auto-Abs have also been found
in the bronchoalveolar lavage fluid of patients with life-threatening
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Table 1. Infections explained by auto-Abs against type | IFN and OR as
compared to the general population

Infections % of cases  OR (95% confidence interval)
:\vl:th auto-  eN.aand/or  IFN-a and
s IFN-w (100  IFN-w (10 ng/
pg/ml) ml)
Critical COVID-19 14% 13 (8-21) 67 (4-1,109)
pneumonia
Fatal COVID-19 under 21% 17.0 (11.7-24.8) 156.5 (57.8-
70 years old 423.4)
Fatal COVID-19 above  15% 5.8(45-74)  12.9(8.4-19.9)
70 years old
Pediatric COVID-19 10% 5.3(2.8-9.6) 112 (12-14,991)
pneumonia
Breakthrough hypoxemic 24%
COVID-19 pneumonia
Severe flu before 6% 5.7 (3.0-11.1)  139.9 (42.3-
70 years old 462.5)
Avian flu 100%?
WNV neuroinvasive 39% 21.1(16.4-27.1) 138.4 (93.3-
disease (study 1) 205.4)
Under 65 years old 22% 24.4 (14.4- 702 (266-
40.4) 2,149)
Above 65 years old 47% 24.5 (18.0- 85.8 (56.8-
33.4) 131.2)
WNV neuroinvasive 38% 16.8 (12.0-23.3) 101.3 (63.2-
disease (study 2) 162.3)
Under 65 years old 23% 26.6(17.4-40.7) 602 (224.2-
1,616.2)
Above 65 years old 44% 22.3(17.1-29.1) 84.6 (57.6-
124.2)
Severe TBEV encephalitis 10% 49(1.5-159)  20.8(4.5-97.4)
Severe POWV 100%?
encephalitis
Severe USUV infection  67%
Severe RRV disease 4%
Yellow fever virus 38%
vaccine disease
Severe reaction to 60%
chikungunya vaccine
HSV-triggered fulminant  38% 29.7 (11.3-77.9) 1,873.9 (444.4-

viral hepatitis 7,901.8)

2n = 1 patient.
bAuto-abs against type | IFNs carried by the most severe patient out of 24
defined as severe.

COVID-19 pneumonia (218), and in the cerebrospinal fluid of pa-
tients with WNV encephalitis (38), where they probably contribute
to organ-specific viral disease. Recently, the characterization of
repertoire, clonal maturation, and antibody diversity of cir-
culating type I IFN-specific B cells from patients with life-
threatening COVID-19 pneumonia demonstrated that highly
mutated memory B cells producing high-affinity auto-Abs
had undergone extensive T cell-dependent germinal center
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maturation prior to SARS-CoV-2 infection, establishing that
they preexisted COVID-19 pneumonia in these patients (229).
These findings also point to defective thymic T cell tolerance,
rather than defective B cell tolerance, as the underlying im-
munological defect for germinal center maturation of germ-
line autoreactive B cell clones (230).

Consistently, auto-Abs neutralizing type I IFNs have been
found in a growing number of inborn errors of thymic tolerance,
due to T cell-intrinsic impairment of thymocyte maturation in
patients with autosomal recessive (AR) partial RAG1 or RAG2
deficiency (231) and in about one third of patients with X-linked
recessive FOXP3 deficiency (232), or to impaired development of
AIRE-expressing medullary thymic epithelial cells in most pa-
tients with autoimmune polyendocrine syndrome type 1 (APS-1)
(187,192, 226, 233, 234, 235), inborn errors of the alternative NF-
xB pathway (224, 225, 236, 237), and incontinentia pigmenti
(238), as well as in patients with loss-of-function mutations in
IKZF2 (239) and one patient with pre-TCR-a deficiency (240). In
the subsequent years, auto-Abs neutralizing type I IFNs were
found in patients and cohorts with hepatitis C virus disease (241,
242, 243, 244), multiple sclerosis (245), myasthenia gravis and
thymoma (246, 247), and systemic lupus erythematosus (186,
248, 249) following or not prior treatment with IFN-a or IFN-f.
More recently, auto-Abs neutralizing type I IFNs were found in
rare single-gene disorders, including APS-1 (187, 233, 234), RAG1
and RAG2 deficiency (231), and immune dysregulation, poly-
endocrinopathy, enteropathy, X-linked (232).

Overall, following the identification in COVID-19 pneumonia
in 2020, auto-Abs neutralizing IFN-a and/or IFN-f and/or IFN-w
emerged as universal determinants of susceptibility to viral
disease, underlying a growing number of viral infections, re-
gardless of the mechanism underlying their generation
(Table 1). Different approaches are being developed for the
detection of auto-Abs neutralizing type I IFNs in clinical and
research settings (41, 250), including a simple and fast whole
blood assay that can be used for rapid diagnosis of rare inborn
errors of the type I IFN response pathway and the more common
auto-Abs neutralizing type I IFNs (251). These assays can screen
for at-risk individuals and populations, as well as patients in the
course of viral infection. The detection of these auto-Abs is key to
prevention, currently possible through measures to reduce ex-
posure and vaccination, and for treatment stratification and pri-
oritization for antivirals and targeted drugs, including antiviral
monoclonal Abs (181, 252). While clinical trials have been ham-
pered by late administration of type I IFNs, which may lack effi-
cacy and may even be deleterious (253), one trial in COVID-19
patients showed benefit from type I IFN administration during the
early course of infection (253, 254). Furthermore, a trial of early
IFN-B administration for WNV encephalitis with stratification
according to carriage of auto-Abs neutralizing type I IFNs is on-
going (255), overall suggesting the continued broad medical rel-
evance of detecting these auto-Abs.

3. RNA vaccines in the context of type I IFN deficiency

The three clinical pillars of vaccinology are efficacy, safety, and
effectiveness. Over a decade’s worth of research in the devel-
opment of mRNA vaccines showed that, when left in their native
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configuration, they were marred by inherent instability and low
level of protein expression due to their high innate immunoge-
nicity. Specifically, foreign mRNA (whether from infecting mi-
crobe or inoculated vaccine) is recognized by various innate
immune sensors to induce type I IFN and other proinflammatory
cytokines to eliminate the foreign mRNA and/or the cells that
harbor them. Their recognition by innate immune sensing
pathways can be prevented by nucleoside modification (i.e., the
integration of N1-methylpseudouridine [m1¥] in the mRNA
structure), which results in enhanced stability and translational
efficiency (256, 257). Lipid nanoparticles were also developed to
optimize nucleic acid delivery. This platform was rapidly mo-
bilized to tackle the SARS-CoV-2 pandemic, with the original
and subsequent iterations of mRNA vaccines demonstrating
excellent efficacy (variant-specific seroconversion), safety pro-
files (through global monitoring of adverse events following
immunization [AEFI]), and real-world effectiveness (258, 259,
260, 261).

Because deficient type I IFN responses (through monogenic
or autoantibody-mediated processes) underlie life-threatening
COVID-19, there is particular interest in whether such affected
individuals may have compromised or untoward reactions to the
mRNA vaccines. From the perspective of putative compromised
efficacy, type I IFNs are involved not only in innate inhibition of
viral replication, but also were shown to induce adaptive im-
munity (262). Theoretically, humans with deficient type I IFN
immunity may have suboptimal or even absent vaccine re-
sponses, rendering them at persistent risk for severe disease.
However, such concerns did not manifest. Patients with mono-
genic defects in either the production or response to type I IFN
(TLR7, IRF7, IFNARI), including those with monogenic pre-
disposition to producing autoantibodies against type I IFNs
(mutations in AIRE), and older adults with age-associated
autoantibodies to type I IFNs, had humoral response to
mRNA vaccination that was similar in titer and duration to
healthy controls, as were germinal center responses (263).
However, since that study was conducted at a time when two
doses of the original vaccine were recommended, and because
autoantibodies to type I IFN were found to underlie break-
through COVID-19 (178), such individuals were recommended
to receive a third dose of vaccine, similar to other immuno-
compromised populations. In practicality, such individuals
should probably continue to receive the currently updated
SARS-CoV-2-formulated vaccine, as well as the influenza
vaccines. Similarly, using the Swedish national registry for
AEF], no association between autoantibodies to type I IFN and
any of the most commonly reported AEFI was found (170). Due
to the nature of the study, and the rarity of monogenic defects
in type I IFN, the study could not specifically analyze AEFI in
the latter group of patients. However, it should be noted that
the severe AEFI in those with genetic deficiency of type I IFN
responses have occurred to live-attenuated vaccines (43, 44,
264, 265), suggesting that the mRNA or protein subunit vac-
cines may not pose a heightened risk for adverse events in these
individuals. Collectively, the data reinforce the importance of
the mRNA vaccines in effectively and safely protecting pa-
tients, including those with type I IFN deficiency.
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Conclusion

The strength of the CHGE derives from a global group of col-
laborators directly or indirectly studying IEI or other approaches
to the human genetics of infectious diseases, a field in which
global collaboration has been the origin of numerous discoveries
(266, 267). From a small group, the consortium grew to include
more teams. The CHGE held weekly meetings to share insights,
hypotheses, and questions. The breakthroughs we made were
based on sequential studies of rare patients with outlier phe-
notypes. Importantly, our initial insights were not restricted to
rare patients, but were later expanded to larger cohorts of pa-
tients, namely, those lacking genetic defects but having pheno-
copies due to autoantibodies, and those with other types of viral
infections besides COVID-19. The overarching lesson is that
global cooperation to study rare and even single patients can
unlock a problem that is more common with profound im-
plications and have broader relevance, in terms of basic biology
and public health. This is the road we will follow to tackle un-
explained cases of critical COVID-19, MIS-C, and neuro-COVID,
as well as other enigmas, including the COVID-toes, long COVID,
resistance/silent infections, and adverse reactions to vaccine.
We expect that our continued efforts will also provide broad
insights that are essential for mitigating the impact of future
pandemics, whether to new coronaviruses or other emerging
viruses. The application of this “model” to future emerging
pathogens is likely to reap the same clinical benefits while also
enlightening mechanisms of protective immunity and infectious
disease.
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