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A heterozygous USB1 variant linked to

immunodeficiency

Alice Valagussa?@®, Nidia Moreno-Coronal@®, Chantal Lagresle-Peyrou>*@®, Sara Mercurio>®, Margot Tragin®@®, Nicolas Goudin’®,
Mélanie Parisot®’®, Monica Beltrame®®, Despina Moshous'® 2@, and Sven Kracker*?@

Poikiloderma with neutropenia is a genetic disorder characterized by skin abnormalities, nail dystrophy, bone anomalies, and
neutropenia. USBI1 encodes a phosphodiesterase essential for processing spliceosomal U6 RNA and some microRNAs, regulating
their stability. This study describes a heterozygous de novo USB1 variant (p.P44L) identified in a patient with recurrent
infections, hypogammaglobulinemia, and low neutrophil counts. Unlike previously reported mutations, p.P44L affects a
conserved proline in the N-terminal domain, predicted to be critical for protein interactions and stability. Functional assays
revealed that while U6 RNA processing remained intact, the variant altered protein interactions and subcellular localization,
reducing nuclear presence and accumulation within nuclear speckles. In vitro, the variant did not prevent neutrophil
differentiation but reduced clonal capacity. In zebrafish, it led to reduced neutrophils and pigmentation. These findings expand
the spectrum of genetic traits associated with USBI and suggest that a heterozygous variant affecting the N-terminal domain
of USB1 impacts clinical phenotypes and that hypogammaglobulinemia may be associated with USB1 dysfunction.

Introduction

Poikiloderma with neutropenia (PN, OMIM #604173, also known as
Clericuzio PN through the first description of the disease in 1991
by Clericuzio) is a disease characterized by genodermatosis, poiki-
loderma, pachyonychia, hyperkeratosis, bone anomalies, and
neutropenia, predisposing to myelodysplasia (1, 2). Different disease-
causing homozygous or compound heterozygous loss-of-function
(LOF) mutations affecting the U6 small nuclear RNA (snRNA) bio-
genesis phosphodiesterase 1 (USBI) gene (aliases Mpnl and Cl6orf57)
have been identified in unrelated patients (3, 4, 5). USBI encodes a
conserved phosphodiesterase that processes the 3’ end of spliceoso-
mal U6 RNA (6) as well as certain microRNAs (7), thereby regulating
their stability. In our study, we characterize a de novo heterozygous
USBI variant identified in a primary immunodeficient patient.

Results

Clinical case and genetic investigations

The patient, born to healthy, non-consanguineous parents, has
suffered from gastroesophageal symptoms since birth and has

received symptomatic treatment (Fig. 1 A). At 2 years of age, he
developed septic arthritis of the right hip due to Kingella kingae
infection. Around the same time, he started to present with re-
current ear, nose, and throat infections, resulting in a diagnosis
of hypogammaglobulinemia (IgG = 2.78 g/1; IgA = 0.18 g/1; IgM =
0.53 g/1) at 4 years of age (Fig. 1 B). Serological testing revealed
low antibody titers against diphtheria toxoid (0.5 IU/ml), teta-
nus toxoid (0.8 IU/ml), and poliovirus (1.4 IU/ml), whereas the
response to Streptococcus pneumoniae was preserved (145 mg/
ml). Ig replacement therapy was initiated at the age of 6 years,
leading to a general clinical improvement. Over the years, he
suffered from abdominal pain and diarrhea. Ileocolonoscopy at
6 years of age showed discrete inflammatory lesions in the du-
odenal mucosa without villous atrophy and an increase of in-
traepithelial lymphocytes. The patient presented with urticaria
pigmentosa-type skin lesions, consistent with cutaneous mas-
tocytosis diagnosed at 6 years of age. Recurrent anal pruritus and
aphthous ulcers were also noted. Lymphocyte, neutrophil,
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Figure 1. Immunological manifestation of a patient carrying a de novo USB1 heterozygous variant. (A) The pedigree of the index family. (B) Serum IgA,

IgM, 1gG, IgGl, IgG2, IgG3, and IgG4 levels over time for the patient. (C) Neutrophils, leukocytes, lymphocytes, platelets, hemoglobin, and reticulocytes count
over time for the patient. The grey area indicates the upper and lower reference boundaries across different ages. (D and E) Sanger sequencing analysis of gDNA
from all family members (D) and USB1 cDNA from LCLs derived from the patient (P1) and a healthy donor (Ctr) (E). (F) Protein alignment of human USB1 with
orthologs. The red arrow indicates the location of the residue mutated in the patient (P44).
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leukocyte, and reticulocyte counts decreased with age and were
below the normal range after the age of ~12 years (Fig. 1 C).
Hemoglobin and platelet levels were within the normal range.
Immunophenotyping at central hospital facilities indicated
normal distribution and ratio of CD4, CD8 T cell subsets, and
B cell subsets at different ages. However, a low count of CD3,
CD4, and CD8 T cell subsets was found (Table 1). The patient
presented with scoliosis and has been wearing a corset since
the age of 15 years. No neurocognitive defects have been re-
ported. To identify possible genetic factors explaining the pa-
tient’s condition, whole-exome sequencing (WES) of DNA from
total blood samples of the patient and both parents was per-
formed. An autosomal recessive filter was applied to identify
uniparental isodisomy, compound heterozygous, or homozy-
gous variants. However, no likely disease-associated variant
was identified. By analyzing the data with a de novo model, we
identified the USBI (NM_024598) (alias Mpnl and Cl6orf57)
p.P44L, c. 131C>T variant. The variant, detected in 51% of USBI
WES reads (Ref/Alt: 64/69), was exclusive to the patient and
was neither recorded in our internal database (containing
24,284 exomes and 8,623 genomes, March 2025) or in several
open-access databases for human genetic variations, such as
the Exome Sequencing Project, the Exome Aggregation Data-
base, and the Genome Aggregation Database. Sanger sequenc-
ing of the genomic DNA derived from peripheral blood
confirmed its presence in a heterozygous state (Fig. 1 D). The
USBI1P44L variant had a Combined Annotation Dependent De-
pletion score of 32 and damaging PolyPhen and Sorting Intol-
erant from Tolerant prediction scores of 0.9 and 0, respectively
(8). Since the patient presented with a decreased number of
neutrophils and neutrophil development is impaired in autoso-
mal recessive USBI deficiency, we further investigated the
USBIP#4L variant. Analysis of the complete coding sequence of USB1
mRNA in a patient-derived Epstein-Barr virus-immortalized lym-
phoblastoid cell line (LCL) indicated the expression of both the
variant and the wild-type USBLI allele, with no additional genetic
aberrations detected (Fig. 1 E).

USB1P44L retains U6 processing activity

The USB1P#4L variant affects an evolutionarily conserved proline
within the N-terminal proline-rich domain of USB1 (Fig. 1 F and
Fig. S1). Investigations in yeast using USBI truncation variants
have shown that the N-terminal region of USB1 in both yeast and
humans is essential for maintaining protein stability (9). How-
ever, the mechanism of how the N terminus of USBI influences
its stability remains unclear (9). To assess the USBIP44" variant’s
effect on protein stability, we ectopically expressed C-terminal
HA-tagged USBIWT and USBIP44L variant in HEK293T cells.
Western blot analysis of total cell lysates indicated a similar abun-
dance of USBIWT and USBIP#L proteins (Fig. 2 A). Both were de-
tected in the cytoplasm and nucleus (Fig. 2, B-D). However, the
USB1P#4L protein was less abundant in the nucleus compared to
USBIWT (Fig. 2, C and D). In USB1 deficiency, the 3’ end processing
of U6 snRNA is disrupted, leading to a decreased U6 half-life (6)
(Fig. 3, A-F). In contrast, 3’ end processing and U6 snRNA stability
were comparable in the patient-derived LCL and the control
(Fig. 3, A-E). Lentiviral expression of the USB1P*L variant in a
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USB1~/~ LCL increased U6 snRNA stability similar to lentiviral-
expressed USBIWT in contrast to an empty vector or a USB1H208R
LOF variant (Fig. 3 F). Together, these results suggested that the
USB1P44L variant retains U6 3’ end processing catalytic activity.

USBI1P#4L affects the proteomic interactome

To investigate the impact of the USB1P44" variant on protein-
protein interactions, we performed immunoprecipitation ex-
periments on HEK293T cells ectopically expressing HA-tagged
USBIWT and USB1P44L proteins via magnetic bead-bound anti-HA
antibodies (Fig. 4 A). Proteomic analysis identified a total of 87
proteins associated with USBIWT and 40 proteins associated with
USB1P44- compared to the empty vector control (Fig. S2, A and B,
and Table S1). Among these, 31 proteins were enriched in both
conditions, including 12 previously reported USB1 interactors,
such as PRPF19, CDC5L, and PLRGI (13), validating our approach.
Comparative analysis revealed 18 differently interacting pro-
teins between USBIWT and USB1P44" interactomes (Fig. 4 B and
Table S1). Gene ontology enrichment analysis indicated that
PRPF19, CDC5L, PLRGI1, RBM22, RBM27, DHX8, MTREX, RPLI1S,
SNRPD3, and MYHIO are associated with RNA splicing/pro-
cessing and ribonucleoprotein complex biogenesis, with addi-
tional associations to the spliceosome, PRP19 complex, and
nuclear speckles (Fig. S2, C and D). The abundance of most
proteins was reduced in the USB1P44L interactome. Three pro-
teins (TMED3, ATP5PD, and ATP5PB) were reproducibly pre-
cipitated only in the USBIWT (Fig. S2 E). Notably, ATP5PD and
ATP5PB are subunits of mitochondrial complex V involved in
the ATP biosynthesis process (14), aligning with prior obser-
vation of dual USBI1 localization to the nuclei and mitochondria
in yeast, where USB1 overexpression may compensate respi-
ratory deficiency (15). Conversely, TCPE (encoded by CCT5) and
PKN2 were enriched in the USBIP**L pulldown (Fig. 4 B and Fig.
S2 E). Studies with Cct5 knockout mice highlighted the impor-
tance of the CCT5-encoded protein for hematopoietic stem cells
homeostasis and differentiation into myeloid and lymphocyte
compartments (16). KPNBL, a protein that mediates the docking
of the importin/substrate complex to the nuclear pore and thus
promotes nuclear import, was enriched in the USBIWT inter-
actome compared to USBIP*L (Fig. 4 B). To date, there are no
studies directly addressing USB1 transport mechanisms. By an-
alyzing public proteomic data from a study investigating KPNBI-
mediated cargo proteins (17), we observed reduced nuclear levels
of USBI in cells treated with importazole, a KPNBI inhibitor
(Fig. 4 C). Taken together with our previous observations of re-
duced nuclear localization of the USBIP44 variant (Fig. 2, C and
D) and the evidence of the KPNB1-USBI interaction (Fig. 4 B),
these findings suggested that KPNBI1 plays a role in mediating the
intracellular transport of USBI into the nucleus.

Further immunofluorescent microscopy 3D analysis indi-
cated the presence of a high-intensity signal within the nucleus,
mainly in USBIWT expressing cells (Fig. 4, D and E; and Fig. S2 F).
This suggests that the USB1P44L variant has an altered subcellular
distribution, especially within the nucleus. The gene ontology
analysis (Fig. S2, C and D) highlighted “nuclear speckles,” also
referred to as nuclear splicing factor compartments. These
subcellular structures can be visualized with an antibody
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Figure 2. USB1P44L has an altered subcellular localization. (A-C) Western blot analysis of total cell (A) and cytosol vs. nucleus lysates (B and C) obtained
from HEK293T cells ectopically expressing USB1-HA variants. Bars and error bars are averages of USB1-HA relative abundance normalized to HSP90 (cytosol)
and SP1 (nucleus), and SD from four independent experiments. Two-way ANOVA statistical analysis was performed. “ns,” nonsignificant differences (P > 0.05),
*P < 0.05 (n = 4). (D) Semiautomatic quantification of immunofluorescence staining confirmed a decreased mean intensity nuclear vs. cytosolic ratio for
HEK293T cells expressing USB1P44- protein. Each independent experiment (n = 3) was represented with a different color. A minimum of 25 cells were analyzed
for each independent experiment. An unpaired t test was performed. **P < 0.01. Source data are available for this figure: SourceData F2.

directed against the spliceosome assembly factor splicing
component 35 (SC35) (19). Immunofluorescent staining of SC35
and ectopically expressed C-terminal HA-tagged USBIWT in
lentiviral-transduced HEK293T cells indicated the presence of
USBL in nuclear speckles (Fig. 4, D and F). Decreased accumu-
lation of USB1P44L within nuclear speckles, largely associated to
less high USBI1 intensity signal, was observed. Together, our
immunofluorescent and proteomic analysis indicated an im-
pact of the USBIP#4L variant on the USB1 protein interactome.

In vitro and in vivo analysis of USB1P44L function

To evaluate the impact of the USB1P#4L on neutrophil differen-
tiation in vitro, human CD34* hematopoietic stem and progenitor
cells (HSPCs) were transduced with lentiviral vectors coex-
pressing the different USBI variants and the GFP reporter gene
to follow the transduced cells. Cells were subsequently differ-
entiated in liquid cultures into the neutrophil lineage. Once
gated on CD14~ (GFP* or GFP- alive cells), the frequencies of
CD15*/CD11b* populations were not affected by the expression of
the different USB1 variants, indicating that none of the USB1

Valagussa et al.
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variants blocked neutrophil differentiation either at day 8 or day
14 (Fig. S3, A and B). Additionally, May-Griinwald Giemsa
(MGG) staining revealed no detectable morphological differ-
ences among experimental conditions (Fig. S3 C), further sup-
porting that neutrophil maturation occurs across all groups. At
day 2.5 after transduction, we found a similar percentage of GFP*
cells in infected cells (Fig. 5 A). However, over time (after 8 and
14 days of culture), cells ectopically expressing different USB1
variants, including the wild type, showed a decreased percent-
age of GFP* cells (Fig. 5 B). This suggests that high levels of USBI
protein disadvantage the cells. To further assess the clonal ca-
pacity of cells harboring the various USBI variants throughout
the myeloid and erythroid lineages, human colony-forming unit
assays with and without erythropoietin were performed. We
observed reduced myeloid and erythroid colony formation in
cells overexpressing USB1H28R or USBIP44L variants compared
to USBIWT (Fig. 5, C and D; and Fig. S3 D). Together, this indi-
cated that while the USB1P44F variant does not block neutrophil
differentiation as such, it impacts the clonal capacity in the
myeloid lineage.

Journal of Human Immunity
https://doi.org/10.70962/jhi.20250110

920z Atenuged 0| uo 3senb Aq 4pd 01106202 1Ul/0L61561/01 L0SZ0Z8/ ¥/ L /4pd-8loe/yl/Bio sseidnyj/:dny woy papeojumoq

5 of 16



ctrl usB1+ P1
-+ - -+ . . + - PNK
- * £ - + + - + +  PNKBuUff 1.0-4 - ctri
. P1
i 8 — USB1™-
o Poly(A)+U6 8
- oy g
S — e -— p— :' B 2 s
s
7 5
[
e o
R ki s
¢ £ Poly(A)+5S
. : e 0.0 : ;
0 4 8
- . . D SN WS o e s 5S Time in inhibitor (h)
L
1.0+
= ctr1
[]
B E ) = ctr2
100+ OCtr 3 - ctr3
- 3 =~ USB17-
S . mUSB1*+ 2
e T ELER + P1
9 3
o 60 ‘ o
3 \ ©
= s ]
2 40
20+ 0.0 [ ;
& ‘ & E 0 4 8
| Time in inhibitor (h
5 ﬁ o, -_ifg,j , ¢ = R B oo (h)
U, Uy u, Us Ug U, Ug Ug
c F
1.0
ctrl P1 usB1* - EV
3 —— WT
L Oh 4h 8h Oh 4h 8h Oh 4h 8h § 2 usB1
-g § —— USB1H208R
. 3 2 v USB1P44L
67 nt — '---~——--— ue %é
23 o054
=T
° 5
© D
0.0 , .
0 4 8

Time in inhibitor (h)
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SEM from two independent experiments. EV, empty vector. Source data are available for this figure: SourceData F3.
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statistically significantly enriched proteins. Known USB1 interactors are marked in blue. (C) Mass spectrometry analysis of nuclear fraction of DMSO- and IPZ-
treated NB-4 cells (n = 3) (17). Proteomics data were obtained at PRIDE (PRoteomics IDEntification Database) under accession number PXD056172. An unpaired
t test was performed for USB1 and its interactors (PLRG1, CDC5L, and SMN1). ns, nonsignificant differences (P > 0.05), **P < 0.01. (D) Representative confocal
microscopy images for HEK293T cells stably expressing USB1WT or USB1P44t variant (n = 3). SC-35 was included to visualize the nuclear speckles. Scale bar = 15
um. For each image, pixel classification was performed using a machine learning Ilastik model, and the resulting mask is displayed. For the USB1-HA
signal, we trained the model to create a mask of high-intensity signal voxels. (E) Percentage of cells presenting USB1-HA high-intensity signal in the
nuclei (n = 3). (F) Signal overlap between USB1-HA and SC-35 was quantified using 3D pixel classification via an Ilastik machine learning model, focusing
on high-intensity USB1-HA pixels. A threshold of 27 voxels was applied to define a cellular compartment. Semiautomated quantification was executed in
Fiji (RRID:SCR_002285). IPZ, importazole. Source data are available for this figure: SourceData F4.

Next, we studied the functional impact of the USB1P44L vari-
ant in zebrafish. A zebrafish model of PN, utilizing a morpholino-
mediated ushl knockdown, has been described to recapitulate
human syndrome hallmarks, including neutropenia (20). Using
the Tg(mpx:GFP) zebrafish line, we injected human mRNA (200
pg/embryo) encoding USBI proteins into embryos. Notably,
injections of a higher dose of USBI mRNA variants (300 pg/
embryo) increased mortality at 1 day postfertilization (dpf)
(Fig. S4 A). At 2 dpf, embryos injected with the mRNA (200 pg/
embryo) encoding the USB1P#4L variant showed reduced neu-
trophil count and pigmentation compared to those injected
with mRNA encoding USBIWT, USBI1H208R [OF variant, and
mRFP] mRNA (Fig. 5 E and Fig S4 B). No differences in tail area,
morphology (2 dpf), or development (5 dpf) were observed
across all groups (Fig. S4, B-D). Since the USBIP44L variant re-
tains U6 3’ end processing catalytic activity, we next investi-
gated whether USB1P44L could rescue the morpholino-mediated
usbl knockdown phenotype. As reported, splice-blocking
morpholino (SMO)-A morphants showed reduced neutro-
phil count and pigmentation at 2 dpf compared to controls
(Fig. 5 F and Fig. S4 E). At 5 dpf, 80% of SMO-A morphants
had defective pharyngeal arch architecture with varying
degrees of severity (Fig. 5 G). Co-injection of human USBIWT
or USBIP#*L mRNA with SMO-A rescued the phenotype, in-
creasing neutrophil count and pigmentation to near-control
levels and improving overall development (Fig. 5 F and Fig.
S4 E). However, co-injection with the catalytically dead
USB1H208R yariant did not rescue these parameters. Together,
these results suggested that while USB1P#4L retains functional
activity, it can be detrimental regarding neutrophil count and
pigmentation.

Discussion

We have identified a specific heterozygous variant of USBI,
leading to the expression of a USBI*#4L protein, which is likely to
be associated with an inborn error of immunity in a patient who
presented early in life with hypogammaglobulinemia, and in
whom counts of lymphocytes, neutrophils, leukocytes, and re-
ticulocytes decreased with age. The de novo USB144L variant,
which has never been reported in publicly available databases,
affects an evolutionarily conserved proline residue within the
proline-rich N-terminal domain of the USBI1 protein. Functional
evidence supporting the disease association of the USBIP44:
variant includes the following observations: (1) ectopic expres-
sion of the USB1P*4L variant in CD34* HSPCs reduced myeloid
and erythroid colony formation compared to USBIWT, and (2)
injection of mRNA encoding the USB1P44L variant in zebrafish

Valagussa et al.
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reduced neutrophil count and pigmentation compared to
controls.

Homozygous and compound heterozygous USBI LOF variants
cause PN. Therefore, the de novo USBIP44L variant is unlikely to
be a LOF variant due to its disease association as a heterozygous
variant. Indeed, the USB1P44L variant retains its catalytic activ-
ity, as demonstrated by its ability to process U6 RNA similarly to
the wild type and by the partial phenotypic rescue observed in
the PN zebrafish model. Although neutropenia is one of the
major manifestations in PN, a recent study enlarged the spec-
trum of affected cellular subsets by revealing that defective
monocyte plasticity may contribute to disease manifestations in
PN (21).

USBIP44L may exert its pathogenic effect through altered in-
teraction dynamics. Our proteomic data revealed a significant
reduction in the number of interactors for the USB1P44L variant
compared to USBIWT. This supports the hypothesis that the
highly conserved proline residue USB1744L, mutated in the pa-
tient, plays a critical role in protein-protein interactions and
complex formation. Our study indicated that KPNB1 was en-
riched in the USBIWT interactome compared to USB1P44L, and
nuclear USBI levels decreased with KPNB1 inhibition (17). To-
gether, these observations supported a role for KPNBI in
USBI nuclear import and could explain the reduced nuclear
localization of USB1P#4k. Gene ontology enrichment analysis
of proteins with decreased interaction with USB1744F high-
lighted pathways related to RNA splicing, RNA processing,
ribonucleoprotein complex biogenesis, and nuclear speckles.
Immunofluorescence staining reported that USB1 co-localizes
with SC-35-marked nuclear speckles, while USB1P44L dis-
played reduced accumulation, indicating an altered sub-
cellular distribution.

A recent study proposed a novel and U6-independent role for
USBI1 in PN, suggesting that the USBI function is important for
miRNA stability (7). This regulation is thought to occur either
through the steric inhibition of exonucleases or by catalyzing the
formation of a 2'-3’ cyclic phosphate at the 3’ end of miRNAs.
Both mechanisms could protect miRNAs from degradation and
thereby modulate their abundance and functional activity
within hematopoietic cells. Although our study did not investi-
gate the impact of USB1P44L on miRNA stability, it is noteworthy
that many of the USBI interactors are miRNA-binding proteins
(22). The reduced interaction of the USBIP44L variant with its
interactors might result in the dysregulation of miRNA levels.
Whether, how, and on which miRNAs USB1P44L (and USBIWT)
might act are interesting questions that should be addressed by
future studies.
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Figure 5. The USB1P44" variant impacts myeloid differentiation in vitro and in vivo. (A) Percentage of GFP* cells in human CD34* cells at day 2.5 following
the transduction step (n = 7). Bars and error bars are the averages of the percentage of alive GFP* cells and SD from seven independent experiments.
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(B) Percentage of GFP* cells at days 8 and 14 normalized to the GFP* population at day 2.5. Error bars are SEM from a minimum of two independent
experiments (n = 2). (C) Colony-forming unit (CFU) potential of myeloid differentiation (n = 3). (D) CFU potential of myeloid (white bars) and erythroid
(brown bars) differentiation (n = 3). (D) were evaluated after an 8-day culture. Bars and error bars are the averages of the percentage of the indicated
populations and SEM from three independent experiments. Ordinary one-way ANOVA statistical analysis was performed. *P < 0.05. Statistically nonsig-
nificant differences were not annotated. (E) Neutrophil count at 2 dpfin zebrafish overexpressing indicated USBI variant RNAs (n = 4 biological replicates, in
orange mean + SEM). Ordinary one-way ANOVA statistical analysis was performed. **P < 0.01 and ****P < 0.0001. Statistically nonsignificant differences
were not annotated. (F) SMO-A morphants injected with indicated USB1 variants (n = 4 biological replicates, in orange mean + SEM). Ordinary one-way
ANOVA statistical analysis was performed on log,-transformed data. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Statistically nonsignificant
differences were not annotated. (G) Classification of Alcian blue staining highlights morphological alterations at 5 dpf (n = 3). From left to right: ventral view

of a control embryo (left) and representative pictures of the mild (middle) and severe (right). Scale bar = 250 pum.

Our data, which involved the expression of various USB1
variants in human CD34* HSPCs as well as zebrafish embryos,
indicated that USB1 protein levels within cells have a limited
dynamic range that is sufficient to support physiological USB1
function. Patients with partial duplication of chromosome 16q
have been reported (23). Notably, the USBI gene is localized
within the cytogenetic band 16q21. Based on our observations,
one may speculate that increased USBI protein levels due to
chromosomal duplication involving 16q21 might contribute to
clinical presentations such as recurrent episodes of respiratory
tract infections in these patients.

Our patient presented early in life with hypogammaglobu-
linemia and intermittent neutropenia. Interestingly, a recent
study also documented hypogammaglobulinemia alongside
neutropenia in a Clericuzio-type PN patient (24). These cases
highlight the importance of serum immunoglobulin monitoring
in PN patients, as early detection of immunoglobulin deficien-
cies could enhance disease management and improve quality of
life. Cutaneous mastocytosis, observed in our patient, has pre-
viously been reported in a PN patient (25), suggesting that this
dermatological manifestation may be part of the broader phe-
notypic spectrum of PN.

The pathological mechanism of the USB1P#4L variant appears
to involve altered cellular localization and protein interactions
in contrast to the autosomal recessive form of USBI deficiency
(PN), in which U6/miRNA end processing is disease causing.
However, we cannot exclude the contribution of additional ge-
netic modifiers or environmental factors that may shape the
clinical presentation, particularly the gastrointestinal symptoms
and hypogammaglobulinemia observed in the patient.

In conclusion, our study indicates that disturbed USB1
function can arise independently of its catalytic activity due to
a heterozygous variant affecting the N-terminal proline-rich
domain of USBL.

Materials and methods

Blood sample collection from patients and healthy donors
Peripheral blood samples were collected from the patient after
they provided written, informed consent. Genetic studies and
data collection procedures were approved by the local institu-
tional review board (Comité de Protection des Personnes Ile de
France II, Paris, France; reference: 2015-01-05; 2015-01-05 MSZ)
and the French Advisory Committee on Data Processing in
Medical Research (Comité Consultatif sur le Traitement de
I'Information en matiére de Recherche dans le domaine de la
Santé, Paris, France; reference: 15.297bis).

Valagussa et al.
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Genomic DNA was extracted from PBMCs. Exome libraries
were performed with the Twist Bioscience kits (Twist Human
RefSeq Exome Kit, 36 Mb) and with the protocol version Twist-
NGS Exome-96-12-DOC-001016-Rev1.0-May2018. Briefly, ge-
nomic DNA (500 ng) was sheared with an Ultrasonicator
(Covaris). A total amount of 50 ng of the fragmented and purified
double-strand DNA was used to prepare Twist Exome libraries as
recommended by the manufacturer, but with no initial en-
zymatic shearing and using adaptators with Unique Dual
Identifier (IDT). Barcoded exome libraries were pooled and
sequenced with the NovaSeq6000 system (Illumina), generat-
ing paired-end reads (100 bases + 100 bases). After demulti-
plexing, sequences were aligned to the reference human genome
hgl9 using the Burrows-Wheeler Aligner. The mean depth of
coverage obtained was >111X with >97.9% of the targeted exonic
bases covered by at least 15 independent reads and >97.3% cov-
ered by at least 30 independent reads. Downstream processing
was carried out with the Genome Analysis Toolkit, SAMtools
(RRID:SCR_002105), and Picard (RRID:SCR_006525), following
documented best practices (http://www.broadinstitute.org/
gatk/guide/topic?name=best-practices).

Cell line culture

The USBI~/- BEBVs were provided by Elisa A. Colombo from
Universita degli Studi di Milano-Bicocca, Milan, Italy. The
other BEBV cell lines were obtained from the Centre de Re-
ssources Biologiques (Necker Campus). BEBVs were cultured
in RPMI-1640 medium (#21875-034; Gibco) supplemented
with 15% fetal bovine serum (FBS, #10270-106; Gibco) and
10 pg/ml Gentamicin (#15710-049; Gibco). 5 mg/ml Actino-
mycin D (#BML-GR300; Enzo) was added when indicated.
HEK293T cells (RRID:CVCL_0063) were cultured in DMEM
with GlutaMAX (#31966-047; Thermo Fisher Scientific), 10%
FBS (#10270-106; Gibco), and 10 pg/ml Gentamicin (#15710-
049; Gibco). All cell lines were tested negative for myco-
plasma contamination.

gDNA and mRNA sequencing

gDNA was isolated from the peripheral blood of patient and
parents using the FlexiGene DNA Kit (51206; Qiagen). A first PCR
was performed using specific primers (USB1_gDNA_F 5'-ACC
CCAATGAGACAATACTGGA-3' and USB1_gDNA_R 5'-GGTGCC
CGGGAACATGTT-3') and GoTaq DNA Polymerase (#M7845;
Promega). The correct size of the amplicon was confirmed by a
resolution of products in a 1% agarose gel. Sequencing was
performed using USB1_gDNA_F primer.
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To sequence the mutation site, PCR amplification was per-
formed with Go Taq G2 DNA (M784B; Promega), USBl_cDNA
primers (USBI_F ¢DNA 5'-CTGCTCTGGTGGTCTTGGAT-3' and
USB1_R cDNA 5'-CCCGTGTTTTGTGCTGTCAT-3'), and a melting
temperature (Tm) of 70°C. HPRT1 (HPRTI_F 5'-CCGGCTTCCTCC
TCCTGA-3' and HPRT1_R 5-TCTCGAGCAAGACGTTCAGT-3')
amplification was used as an internal control (Tm 60°C). The
forward primer was used for the sequencing reaction. All PCR
products were used in the subsequent sequencing BigDye reac-
tion (Terminator 3.1 Sequencing Kit Applied Biosystems) with
the indicated primers. The sequence reaction was read using the
Applied Biosystems 3500 Series Genetic Analyzer (Rapid_Seq_
Assay_XL_POP7). Results were analyzed by SnapGene software
(http://www.snapgene.com, RRID:SCR_015052).

Plasmids and lentiviral vectors

pCS2+ plasmid containing full-length human wild-type USBI
was a kind gift from E. Colombo (Universita degli Studi di
Milano-Bicocca, Milan, Italy). Following the manufacturer’s in-
structions, the GeneArt Site-Directed Mutagenesis System
(#A13282; Thermo Fisher Scientific) was utilized along with
specific primers (USB1_131_CT_F 5'-CCAGGCAGAGATTTCTAG
TACCTGACAGTGT-3', USB1_131_CT_R 5'-ACACTGTCAGGTACT
AGAAATCTCTGCCTGG-3’, USB1 623_AG_F 5'-AGGATCCTTCTT
TCCGCCTCAGCCTGGCCTG-3' and USB1 623_AG_R 5'-CAGGCC
AGGCTGAGGCGGAAAGAAGGATCCT-3’) to introduce the mu-
tations of interest. Those inserts (with the addition of an HA tag
at the C-terminal when indicated) were subcloned into the len-
tiviral pWPI backbone (RRID:Addgene_12254) by GenScript. The
Structure Fédérative de Recherche (SFR) BioSciences Gerland-
Lyon Sud (Lyon, France) vector facility produced the lentiviral
supernatant.

Transduction

BEBVs were lentivirally transduced with the different con-
structs (pWPI-EV RRID:Addgene_12254, USB1WT, USB1H208R,
and USB1P44L) with 0.25 mg/ml LentiBOOST (SIRION BIOTECH)
without antibiotics (multiplicity of infection [MOI] 30), for 6 hat
37°C. At day 12 after transduction, cells were resuspended in
FACS buffer (PBS, 2% FBS, and 1 mM EDTA) with 7-AAD and
sorted using a 100-pm nozzle (BD FACS Aria II SORP; SFR
Necker). HEK239T cells (RRID:CVCL_0063) were lentivirally
transduced with the different constructs (pWPI-EV, USBIWT-
HA, and USB1P#*'-HA) with 0.25 mg/ml LentiBOOST (SIRION
BIOTECH) without antibiotics (MOI 20) for 6 h at 37°C. 0.2 M/
condition of CD34* cells were plated in 100 pl of pre-activation
media. The day after, cells were transduced overnight with a
MOI of 100 and 0.25 mg/ml of LentiBOOST (SIRION BIOTECH).

Cell lysis and western blot

Previously transduced HEK293T cells (RRID:CVCL_0063) were
collected directly from culture flasks, washed once with PBS, and
lysed in Cell Lysis Buffer (#9803; Cell Signaling). Cytosolic
versus nuclear protein extraction was performed according
to the manufacturer’s instructions (NE-PER Nuclear and Cyto-
plasmic Extraction Reagents, #78833; Thermo Fisher Scientific).
After adding the nuclear extraction reagent (NER) buffer,
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samples were sonicated for 10 min at 4°C (Bioruptor Pico).
Protease/Phosphatase Inhibitor Cocktail (1X) (#5872S; Ozyme)
was added to the lysis buffers immediately before cell lysis.
Proteins were quantified (Pierce Detergent Compatible Bradford
Assay Reagent, #1863028; Thermo Fisher Scientific) and boiled
with Bold LDS Sample Buffer 4x (B0008; Thermo Fisher Scien-
tific) and B-mercaptoethanol (M3146; Sigma-Aldrich). Protein
extracts (20 pg) were resolved using SDS-PAGE on a NuPAGE
12% Bis-Tris gel (¥NP0342BOX; Invitrogen). A Spectra Multi-
color Broad Range Protein Ladder (#26634; Thermo Fisher Sci-
entific) was included for molecular weight reference. Proteins
were transferred onto a low-fluorescence polyvinylidene di-
fluoride membrane using the iBlot 3 Western Blot Transfer
System (Thermo Fisher Scientific). Each membrane section was
blocked with 5% BSA (#GAUBSAO01-64; Eurobio) in Tris Buffered
Saline with Tween®-20 (TBS-T) 1X (#28360; Thermo Fisher
Scientific) and incubated overnight at 4°C with gentle agita-
tion with the following primary antibodies: anti-USB11/1,000
(#240421, RRID:AB_2909426; Abcam), anti-HA tag 1/2000
(#H6908, RRID:AB_260070; Sigma-Aldrich), anti-human SP1
(D4C3) 1/1,000 (#9389S, RRID:AB_11220235; Ozyme), anti-
human HSP90 1/1,000 (#4874S, RRID:AB_2121214; Ozyme),
and anti-B-actin 1/1,000 (sc-47778, #A2023, RRID:AB_626632;
Santa Cruz Biotechnologies). After washing, membranes were
incubated for 1 h with the appropriate HRP-conjugated sec-
ondary antibody (anti-mouse-HRP, #31430, RRID:AB_228307;
Thermo Fisher Scientific or anti-rabbit-HRP, #31460, RRID:
AB_228341; Thermo Fisher Scientific). Chemiluminescence
detection was performed using the SuperSignal West Femto
Maximum Sensitivity Substrate (Thermo Fisher Scientific) on
a ChemiDoc XRS system (Bio-Rad). The resulting images were
analyzed using Image Lab 4.0 software (Bio-Rad).

Immunofluorescence

Glass coverslips (¢ 12 mm) have been sterilized and coated for 1h
at room temperature with 0.1 mg/ml Poly D lysine (#A3890401;
Gibco). After rinsing the culture surface for three times with
distilled water and letting it dry, 60,000 cells/condition of
HEK293T cells expressing USB1-HA variants have been plated
overnight. The following day, cells were washed once with PBS
and fixed with 4% paraformaldehyde (PFA, #P6148; Sigma-
Aldrich) for 15 min. After fixation, cells were rinsed with PBS
and permeabilized using 0.5% Triton X-100 (Triton X-100,
#086K0164; Sigma—Aldrich) in PBS for 10 min. To block non-
specific binding, the cells were incubated for 40 min in a
blocking solution consisting of previously filtered 5% BSA (BSA
Fraction V, #GAUBSAO1-62; Sigma-Aldrich) in PBS. Primary
antibodies were diluted in PBS with 5% BSA and incubated
overnight at 4°C: anti-HA Rabbit 1/50 (#H6908, RRID:AB_
260070; Sigma-Aldrich) and anti-SC35 1/200 (#Ab11826, RRID:
AB_298608; Abcam). Following two washes with PBS, secondary
antibodies were added, tailored to the isotype or species of the
primary antibody: Goat anti-Mouse IgG Secondary Antibody,
Alexa Fluor 555 (1/1,000, #A21422, RRID:AB_2535844; Thermo
Fisher Scientific), Donkey anti-Rabbit IgG, Alexa Fluor 488 (1/
1,000, #A21206, RRID:AB_2535792; Thermo Fisher Scientific)
were incubated for 30 min at room temperature. After three
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final PBS washes with gentle agitation, the coverslips were
mounted using ProLong Gold Antifade Mountant with DNA
Stain DAPI (#P36935; Invitrogen). Z stacks were acquired on a
Leica SP8 confocal microscope with a 63x NA1.4 oil objective
(Plateforme d’'Imagerie Cellulaire, SFR Necker) with the LAS X
version 3.5.7.23225 (Leica Application Suite X) acquisition
software. Imaging was performed on fixed cells, and acquis-
itions were conducted at room temperature. Images have been
analyzed with Fiji (version 2.14.0/1.54f, RRID:SCR_002285).

For cell compartment intensity and morphology analysis,
stacks were first projected in maximum intensity. A FIJI (26) (v
2.14.0, RRID:SCR_002285) macro and the BIOP (https://github.
com/BIOP/ijl-utilities-wrappers) plugin of cellpose2 (27, 28)
cyto2 model were used for nuclei and cytoplasm segmentation
with the possibility of having manual corrections. Mean inten-
sities in nuclei and cytoplasm for each cell have been measured.
For this analysis, a total of 143 for USBIWT-HA and 149 for
USBIP44L-HA cells were analyzed across three independent ex-
periments. The results are presented to illustrate individual data
points in a different color for each independent experiment. To
allow the application of the normal law in statistics, a minimum
of 25 cells were analyzed for each condition per replicate.

To assess signal overlap between SC-35 and USB1-HA var-
iants in nuclei, we firstly denoised the stacks using the Pure-
Denoise (29) plugin in a FJJI (RRID:SCR_002285) (26) macro.
Next, we segmented the nuclei, SC-35 aggregates, and USB1-HA
protein in 3D, employing a supervised voxel classification shal-
low learning method in Ilastik (30) (v1.4.0.postl). To identify
only USBI-HA high-intensity signal, four different labels were
used to train the Ilastik machine learning model: high, medium,
low, and background. These annotations allowed the identifi-
cation of what we defined as USB1-HA aggregates, which was
then investigated for co-localization with the SC-35 signal. Pixel
classification for the SC-35 signal was based on two labels: signal
and background. Semiautomated quantification was executed in
FIJI (RRID:SCR_002285) (26), and a threshold of 27 voxels was
then applied to define an aggregate. A total of 56 for USBIWT-HA
and 76 for USB1P44L-HA cells were analyzed across three inde-
pendent experiments.

Northern blot and 3’ RACE analysis

To generate a ladder (67 bp) for the northern blot analysis, the U6
PCR product amplified starting from cDNA of control BEBVs
(hU6_R 5'-GGAACTCGAGTTTGCGTGTCATCCTTGCGC-3' and
T7_U6_F1 5'-TAATACGACTCACTATAGGAATCTAGAACATAT
ACTAAAATTGGAAC-3' primers) was purified from the 2% ag-
arose gel following the manufacturer’s instructions (HighPure
PCR Product Purification Kit, #11732676001; Roche). For in vitro
transcription, Standard RNA Synthesis (#E2050; New England
Biolabs) was used.

For RNA isolation, 10 million BEBVs were collected and
washed once with PBS. RNeasy Midi Kit (#75144; Qiagen) was
used according to the manufacturer’s instructions, including the
DNAse I treatment. To remove 3’ terminal phosphate groups (if
present), RNA was treated with T4 polynucleotide kinase (PNK)
(31). Briefly, 15 pg of total RNA was incubated with 6 U T4 PNK
(#M0201; New England Biolabs) in 100 mM Tris-HC, pH 6.5,

Valagussa et al.
Impact of a heterozygous USB1 variant

D QD
\,3'0

100 mM magnesium acetate, and 5 mM B-mercaptoethanol in a
final volume of 100 pl and incubated overnight at 37°C. RNA
treated with PNK buffer only was included as a control. The
enzyme was heat inactivated by incubating at 65°C for 20 min.
Clean-up of RNA was performed with Monarch RNA Cleanup kit
(#T2050L; New England Biolabs). RNA was then treated with
Escherichia coli Poly(A) Polymerase (#M0276; New England Bio-
labs) and incubated at 37°C for 30 min. The enzyme was heat
inactivated by incubating at 65°C for 20 min. Clean-up of RNA
was performed with Monarch RNA Cleanup kit (#T2050L;
New England Biolabs). 4-15 ug of RNA was heated at 95°C for
3 min and resolved in 10% Tris-borate-EDTA (TBE) Urea Gel
(#EC68752BOX; Thermo Fisher Scientific) in TBE running buffer
(#LC6675; Thermo Fisher Scientific) at 20 V the first hour and
then increased by 5-10 V to reach 40 V overnight at 4°C. The
buffer was changed in the middle of the run. RNA was trans-
ferred on Hybond-N* membrane (#RPN303B; Cytiva) using the
Trans-Blot Turbo transfer system (Bio-Rad) for 1h at 25 V-1.0A.
The membrane was briefly dried on a paper towel and cross-
linked twice (face up) using a 254 nm UV cross-linker at 125 m]/
cm?. In the hybridization oven, the membrane was pre-
hybridized in a tube with 10 ml ExpressHyb hybridization
solution (#636833; Takara) for 40 min at 40°C. The pre-
hybridization solution was removed, and the membrane was
hybridized overnight at 40°C with 100 pmoles IR U6 probe
(h_Us6, 5'-GGAACTCGAGTTTGCGTGTCATCCTTGCGC-3' with
5’ IRDye 800CW). The probe was at 95°C for 5 min and then
diluted in 10 ml ExpressHyb hybridization solution. The
membrane was washed twice in a glass tray with 2x saline-
sodium citrate (SSC, #T9172; Takara)-0.1% SDS (#0503; Sigma-
Aldrich) at 110 rpm for 10 min at 40°C, dried with paper towels,
and imaged on Li-Cor Odyssey CLX Scanner to detect emission.
The probes were removed from the membrane by placing itin a
glass tray and shaken with microwave-boiled 0.1x SSC-1% SDS-
40 nM Tris-HCl, pH 8.0, at 110 rpm for 10 min at room tem-
perature. The strip procedure was performed a second time prior
to pre-hybridization and overnight 40°C hybridization with 100
pmoles IR 5S preheated probe (h_5S 5'-AAGTACTAACCAGGC
CCGAC-3', with 5’ IRDye 800CW).

For 3’ RACE experiments, 1 ug of PNK-PAP-treated RNA was
used, according to the manufacturer’s instructions (FirstChoice
RLM-RACE kit, #AM1700; Ambion). For reverse transcription, a
3' RACE adapter with 2 additional As at the 3’ was used (5'-GCG
AGCACAGAATTAATACGACTCACTATAGGTI2TAA-3'). 3’ RLM-
RACE PCR was performed using U6 3’ RACE primer (5'-GGAATC
TAGAACATATACTAAAATTGGAAC-3') and GoTaq DNA Poly-
merase (# M7845; Promega) with an annealing temperature of
55°C for 30 s. RACE products were purified with the High Pure
PCR Product Purification Kit (#11732676001; Roche), cloned us-
ing the PCR Cloning Kit (#231122; QIAGEN) at 16°C for 2 h, and
transformed into bacteria (One Shot MAX Efficiency DH5aTM-
TIR Competent Cells, #12297-016; Thermo Fisher Scientific).
UltraPure X-Gal (#15520-034; Invitrogen) was added on the top
of the agar plates to allow blue/white screening to select trans-
formants. At least 24 independent clones per sample in each
experiment were picked. Wizard Plus SV Minipreps DNA Puri-
fication System (#A1460; Promega) was used to extract the DNA
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from each clone. For the following Sequencing BigDye reaction,
MI13_F 5'-GTAAAACGACGGCCAGT-3’ was used as primer.

Quantitative PCR (qPCR) snRNA

Total RNA was isolated using Trizol with Phasemaker tubes in
accordance with the manufacturer’s instructions (#A33250;
Invitrogen). 6 pg of total RNA was treated with Recombinant
DNase I (#2270A; Takara). Polyadenylation, reverse transcrip-
tion, and qPCR were performed using the Mir-XTM miRNA qRT-
PCR TB Green Kit (#638314; Takara) and U6 (#638314; Takara)
and 5S RNAs primers (5S qPCR F 5'-GCCATACCACCCTGAACG-
3’ and 55 qPCR R 5'-GGTATTCCCAGGCGGTCT-3’). QuantStudio
3 Real-Time PCR System was used, and results were analyzed
using the AACt method and normalized to 5S levels.

Co-immunoprecipitation

15 x 10% HEK293T cells expressing USB1-HA (or EV as control)
were washed once with PBS. After a centrifugation at 1,000 g for
5 min, 900 wl of ice-cold IP Lysis/Wash Buffer (Pierce Magnetic
HA-Tag IP/Co-IP Kit, #88838; Thermo Fisher Scientific) com-
pleted with Protease/Phosphatase Inhibitor Cocktail (100X)
(#5872S; Ozyme) was added and incubated on ice for 5 min with
periodic mixing. Cells debris were removed by centrifugation
(13,000 g for 10 min, at 4°C), and protein was quantified
(Bradford assay). 25 ul of Pierce Anti-HA Magnetic Beads were
washed with IP Lysis/Wash Buffer using a magnetic stand.
600 pg of protein was incubated with the pre-washed beads and
shaken on a rotating platform overnight at 4°C. After removing
the unbound sample, 300 pl of IP Lysis/Wash Buffer was added to
the tube and gently mixed. At the end of co-immunoprecipitation
wash step, additional washes were carried out to eliminate
the detergent (three washes in PBS and one with ultrapure
water; tubes were changed after each wash step). The im-
munoprecipitates were eluted by adding 100 pl of Laemmli
Buffer 1X (#1610747; Bio-Rad) to the beads and incubated in a
heat block at 95°C for 5 min 10% of the eluate was resolved in a
western blot to check the quality of the sample, following the
protocol above (Anti-human PLRGI1 1/2500 [#A301-940A-1,
RRID:AB_1548014; Thermo Fisher Scientific] and anti-HA tag
1/2,000 [#H6908, RRID:AB_260070; Sigma-Aldrich] were
used as primary antibodies).

The remaining 90% of eluates were solubilized in 2x lysis
buffer (4% SDS and 400 mM triethylammonium bicarbonate, pH
8.5) and boiled for 5 min at 95°C. Samples were also reduced and
alkylated (10 mM TCEP and 50 mM chloroacetamide). The whole
samples were digested using trypsin (Promega), and S-Trap
Micro Spin Column was used according to the manufacturer’s
protocol (ProtiFi). Peptides were then speed-vacuum dried.
Nano-scale liquid chromatographic tandem mass spectrometry
(nLC-MS/MS) analyses were performed on a Dionex U3000
RSLC nano-LC system coupled to a TIMS-TOF Pro mass spec-
trometer (Bruker Daltonik GmbH). After drying, peptides were
solubilized in 10 pl of 0.1% TFA containing 10% acetonitrile
(ACN). 1 uL was loaded from samples, concentrated, and washed
for 3 min on a C18 reverse phase column (5 um particle size,
100 A pore size, 300 pm inner diameter, and 0.5 cm length, from
Thermo Fisher Scientific). Peptides were separated on an Aurora
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C18 reverse phase resin (1.6 um particle size, 100 A pore size,
75 pm inner diameter, and 25 cm length mounted to the Captive
nanoSpray lonisation module, from IonOpticks) with a 1 h run
time with a gradient ranging from 98% of solvent A containing
0.1% formic acid in MilliQ-grade H,0O to 40% of solvent B con-
taining 80% ACN and 0.085% formic acid in mQH20. The mass
spectrometer acquired data throughout the elution process and
operated in DIA Parallel Accumulation and Serial Fragmentation
(PASEF) mode with a 1.38 s/cycle, with Timed Ion Mobility
Spectrometry (TIMS) enabled and a data-independent scheme
with full MS scans in PASEF. Ion accumulation and ramp time in
the dual TIMS analyzer were set to 100 ms each, and the ion
mobility range was set from 1/K0 = 0.63 Vscm==t01.43 Vscm™2.
Precursor ions for MS/MS analysis were isolated in positive
polarity with PASEF in the 400-1,200 m/z range by synchro-
nizing quadrupole switching events with the precursor elution
profile from the TIMS device. The mass spectrometry data were
analyzed using DIA-NN version 1.8.1 (RRID:SCR_022865). The
database used for in silico generation of spectral library was a
concatenation of human sequences from the Swiss-Prot (release
2024-06) and a list of contaminant sequences. Oxidation of
methionine was set as variable modification, carbamidomethy-
lation of cysteine was set as permanent modification, and one
trypsin misscleavage was allowed. Precursor false discovery rate
(FDR) was kept below 1%. The “match between runs” and nor-
malization options was not allowed. Quantification analysis was
done using home R script. Log, of protein intensities were cal-
culated, then paired student tests were done on proteins show-
ing 70% of paired valid values.

Injection of zebrafish embryos and phenotypic analysis

Zebrafish were raised and maintained according to established
techniques (32) and to the European recommendations (33) and
Italian regulations. All experimental procedures were per-
formed according to Institutional Animal Care and Use Committee
guidelines. Zebrafish Tg(mpx:GFP) (ZDB-TGCONSTRCT-070118-1)
was kindly provided by Dr. Monica Beltrame (Universita degli
Studi di Milano Statale, Milano, Italy). Embryos were cultured
in fish water containing 0.01% methylene blue to prevent
fungal growth and staged according to morphological criteria.
Embryonic ages were expressed as hours postfertilization
and dpf.

Antisense morpholinos (MOs; Gene Tools, RRID:SCR_
005663) designed against the acceptor splice site of the usbl
IVS2 (SMO-A, 5'-GGATCATCTGAAATTTAGGCAGGAA-3') was
used (20). Std-MO, which does not have a target in zebrafish
embryos, was included to check for nonspecific effects due to
the injection procedure (20). 10 pg of each pCS2* plasmids
(USBLI variants and mRFP1) were digested with 2 pl of NotI-HF
enzyme (#R3189S; NEB) for 2 h at 37°C in a final volume of
100 pl. Digested and undigested plasmids were resolved in a 1%
agarose gel to check the correct digestion of the plasmids. 1 pg
of each digested and purified plasmid (GeneJET PCR purifica-
tion Kit, #K0701; Thermo Fisher Scientific) was transcribed
with the mMESSAGE mMACHINE (#AM1340; Thermo Fisher
Scientific). The reaction was incubated for 3 h at 37°C, and the
template DNA was digested by adding 1 ul of TURBO DNAse to the
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reaction (37°C for 15 min). mRNA was precipitated using lith-
ium chloride overnight at -20°C and washed with ethanol,
following the manufacturer’s instructions. RNA’s quality was
checked by running a 1% agarose gel using a RiboRuler High
Range RNA ladder (#SM1823; Thermo Fisher Scientific). RNA
was heated at 70°C for 10 min before loading the gel. RNA was
then quantified, aliquoted, and stored at -80°C until needed.

Needles were prepared with the P87 Flaming Brown Micro-
pipette Puller. Morpholinos and mRNA were thawed, diluted in
water, heated at 65°C for 10 min, and pressure-injected into 1-2-
cell stage embryos using Eppendorf FemtoJet Micromanipulator
5171. For co-injections, SMO-A-RNA mix was prepared to deliver
the two molecules within one single injection. Embryos were
raised in fish water containing 0.01% methylene blue, dechor-
ionated, and anesthetized with 0.016% tricaine (ethyl 3-
aminobenzoate methanesulfonate salt; Sigma-Aldrich) before
observations and picture acquisitions. Images of 2 dpf embryos
were taken on a Leica MZ FLIII epifluorescence stereomicro-
scope equipped with a DFC 480 digital camera and LAS Leica
imaging software (Leica). For each embryo, two pictures were
taken: one at low magnification (5x) and one, zooming on the
tail, at higher magnification (10x). Each picture was taken both
in bright-field and using lasers at 488 or 590 nm to induce the
excitation of GFP and mRFP], respectively. Neutrophil count,
pigmentation, and area of the tail were evaluated at 2 dpf and
quantified with Fiji 2.3.0/1.52q (RRID:SCR_002285) software.
Quantifications were performed in the same region of interest
for each fish. This area goes from the anus to the end of the tail,
where the caudal hematopoietic tissue is located (34).

Alcian blue staining was performed at 5 dpf as previously
described (20). Larvae were anesthetized with tricaine, and up
to 100 larvae were collected in a single 1.5-ml tube. 1 ml of 4%
PFA (#P6148; Sigma-Aldrich) in PBS was added to fix tissues.
Embryos were rocked at room temperature for 2 h, washed two
times with PBS 1X, and dehydrated for 10 min with 1 ml EtOH
50% (diluted in distilled water) at room temperature. 1 ml of
stain solution was added (part A: Alcian blue 8GX 0.02%
[#A3157; Sigma-Aldrich], MgCl, 40 mM [#M2670-100gr; Sigma-
Aldrich], and ethanol 70%; part B: 0.5% alizarin red powder
[#A5533; Sigma-Aldrich] in H,0) and incubated overnight at
room temperature with rocking. The day after, embryos were
rinsed with H,O and treated for 1h with 20% glycerol and 0.25%
KOH to remove pigmentation. Embryos were then incubated
overnight in 50% glycerol and 0.25% KOH and stored in a 50%
glycerol, 0.1% KOH at 4°C. Images of stained embryos were taken
on a Leica MZ FLIII epifluorescence stereomicroscope equipped
with a DFC 480 digital camera and LAS Leica imaging software
(Leica). To facilitate the correct orientation of the embryos, they
were positioned in an agar gel.

CD34* isolation and differentiation

Human umbilical cord bloods were obtained from the Biological
Resources Center of Saint Louis Hospital (Paris, France) in ac-
cordance with the ethical approval procedures (convention
2014/09/23). Mononuclear cells were isolated by density sepa-
ration using SepMate PBMC Isolation Tubes (#85450; STEM-
CELL Technologies) and Lymphocyte Separation Medium
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(CMSMSLO1; Eurobio). CD34" cells were isolated using an in-
direct CD34 microbead kit and a separator (VarioMACS; Mil-
tenyi Biotec), according to the manufacturer’s instructions. Cell
purity was checked with a NovoCyte Flow Cytometer (Agilent).
Only cells with a purity >95% were used for the following
experiments. When indicated, 2 days after transduction, live
GFP* cells were sorted using FACS Buffer and 7-AAD as viability
dye (BD FACSAria II Cell Sorter, 100 pm nozzle).

For CD34* in vitro liquid culture, cells were either maintained
in pre-activation media (X-Vivo 15 medium [#BEBP02-061Q;
Lonza] supplemented with 30% FBS [HyClone], 50 ug/ml of
gentamycin, 300 ng/ml of SCF [300-01-100UG; Peprotech],
300 ng/ml of Fms-related tyrosine kinase 3 ligand [300-19-
100UG; Peprotech], and 100 ng/ml of thrombopoietin [300-
18-100UG; Peprotech]) or cultured in X-Vivo 15 medium
supplemented with 30% FBS, 50 p.g/ml of gentamycin, 100 ng/ml
of SCF, and 100 ng/ml of G-SCF (300-23-10UG; Peprotech). After
8 or 14 days of differentiation, cultures were stained for 30 min
using a combination of anti-CD34-APC (130-113-176, RRID:
AB_2726003; Miltenyi), anti-CD11b-BV785 (301346, RRID:AB_
2563794; BioLegend), anti-CD14-PECy7 (562698, RRID:AB_
2737729; BD Biosciences), and anti-CD15-PE (IM1954U, RRID:
AB_10638572; Beckman Coulter). Before the acquisition, 7-AAD
staining was added, and cells were analyzed by NovoCyte Flow
Cytometer (Agilent). When indicated, Epredia Cytocentrifuge
Cytospin 4, Cytospin 4 (Thermo Fisher Scientific) was used to
prepare 20,000 cells/condition for the MGG staining: it was
performed via an automatic stainer (Hopital Necker Enfants
Malades, DMU BioPhyGen, Laboratoire d’Onco-Hematologie),
and images were taken with an inverted microscope (DMI1RB;
Leica) at 10x.

CD34* cell differentiation was also evaluated by clonal assay
in methylcellulose (MethoCult H4435 or H4535), as previously
described (35). Around 1,000 cells were gently mixed with 1 ml
of MethoCult methylcellulose colony assay medium and were
cultured for up to 14 days in 6-well plates at 37°C in humidified
5% CO,. Colonies were counted on day 10 (for #H4535) and day
14 (for #H4435) and classified according to the morphology and
color of the colony using an inverted microscope (DMIRB; Leica)
at 10x.

Protein sequence alignment and USB1 protein structure

For sequence alignment of human USB1 homologs from various
species, protein sequences were extracted from the Ensembl
Genome Browser (RRID:SCR_002344) and aligned using Clustal
Omega (RRID:SCR_001591) and Jalview (RRID:SCR_006459).
Shading intensity indicates the degree of amino acid identity.
Accession numbers and transcript/protein identifiers from
various biological databases were collected for orthologs across
species. NCBI Reference Sequence: Drosophila (NP_649911.1),
zebrafish (NP_001003460.1), Xenopus (NP_001079479.1), rat
(NP_001014035.1), mouse (NP_598715.2), chimpanzee (XP_
003315166.1), human (NP_078874.2), Nomascus (XP_012360491.
1), Saccharomyces cerevisize (NP_013233.1). Ensembl transcript
identifiers: Tetraodon (ENSTNIT00000000453.1), chicken
(ENSGALT00010052013.1), dog (ENSCAFT00000013577.5).
GenBank: Candida glabrata (CAG62512.1)..1).
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Statistical analysis

Ordinary one-way ANOVA and unpaired t test were performed
using GraphPad Prism version 10.2.3, https://www.graphpad.
com (RRID:SCR_002798). Gene ontology enrichment analysis
was performed with ShyniGO 0.741, filtering with P value cutoff
(FDR) 0.05 (18).

Artificial intelligence
Microsoft 365 Copilot was occasionally used to polish, condense,
and edit the writing of the manuscript.

Online supplemental material

Fig. S1 shows the structural analysis of the P44L mutation in the
USBL protein. Fig. S2 presents the USBIWT and USB1P44! inter-
actome compared to the EV, gene ontology enrichment analysis,
together with illustrative images presenting the pixel classifi-
cation used in the Ilastik model. Fig. S3 includes in vitro liquid
culture differentiation assays. In Fig. S4, the results of ectopic
expression of USB1P44L in zebrafish are reported. In Table S1, the
co-immunoprecipitation data are listed.

Data availability

All data are available in the published article and its online
supplemental material. Fig. 4 C was obtained by filtering openly
available proteomics data associated with a previous indepen-
dent publication by Yuxin Xie et al. (17) and downloaded from
the PRIDE-Proteomics Identification Database under accession
numbers PXD056172.
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Supplemental material

Transit lobe

B USBAWT USB1P#L

Figure S1.  Structural analysis of the P44L mutation in the USB1 protein. (A) The de novo variant is situated within the only modeled ternary structure
of the N-terminal domain, which is predicted to be predominantly disordered (AF-Q9BQ65-F1-v4, AlphaFold Protein Structure Database [10, 11, 12]).
(B) Comparison of the local structural environment around residue 44 in the wild-type (USB1WT) and mutant (USB1P44L) proteins. The model was
visualized using the PyMOL Molecular Graphics System (Version 3.1.0 Schradinger, LLC).
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Figure S2. USB1WT and USB1P44t interactome compared to the empty vector (EV), gene ontology (GO) enrichment analysis, and immunofluorescence
pixel quantification. (A and B) Volcano plot of USBIWT (A) and USB1P44L (B) interactome compared to the EV (n = 4). Red dots denote statistically significantly
enriched proteins. Already known USB1 interactors are marked in blue. (C and D) GO Biological Process (C) and GO Cellular Component (D) were performed
with ShinyGO v0.741 with P value cutoff (FDR) of 0.05 (18). (E) Reproducibly precipitated proteins not included in the volcano plot. Depicted are the four
repetitions for each sample. The height of the bars indicates the detected amount. (F) Representative confocal microscopy images for HEK293T cells stably
expressing USB1WT or USB1P44t variant (n = 3). Scale bar = 15 pm. To identify only USB1-HA high-intensity signal (left panel), four different labels were used to
train the Ilastik machine learning model: high (yellow arrow), medium (green arrow), low (purple arrow), and background (blue arrow). Pixel classification for
the SC-35 signal (right panel) was based on two labels: signal (yellow arrow) and background (blue arrow).
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Figure S3. USB1P44 expression does not block in vitro neutrophil differentiation of CD34* human cells. (A) In vitro liquid culture differentiation (SCF,
G-CSF) of CD34* representative images at day 8. CD15*/CD11b* plots are gated on GFP* (up) and GFP~ (down) CD14~ cells for the indicated USB1
variants. (B) Percentage of CD14-CD15*CD11b* cells either GFP* (left) or GFP~ (right). Bars and error bars are the averages of the percentage of the
indicated populations and SD from at least two independent experiments (n > 2). (C) Representative MGG staining images of sorted GFP* cells showing the characteristic
morphology of neutrophils (day 14, n = 3). Scale bar = 20 um. (D) CFU potential of myeloid differentiation in GFP* sorted cells at 2.5 days after transduction (n = 3). Ordinary
one-way ANOVA statistical analysis was performed. *P < 0.05. Nonsignificant differences were not annotated. CFU, colony-forming unit; EV, empty vector.
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Figure S4. Ectopic expression of USB1P44L in zebrafish. (A) Injections of a higher dose of USB1 mRNA (300 pg/e) were associated with increased mortality of
the embryo at 1dpf (n = 3). Of note, no difference in the mortality between the two doses was registered when injecting the control mRFP1 mRNA. Bars and error
bars are averages of the percentage of mortality at 1dpfand SEM from at least three independent experiments. (B) Tail pigmentation and area of the tail at 2 dpf
of zebrafish overexpressing different USB1 variants (n = 4 biological replicates, in orange mean = SEM). Ordinary one-way ANOVA statistical analysis was
performed. ****P < 0.0001. Nonsignificant differences were not annotated. (C) Alcian blue staining at 5 dpf did not reveal any skeletal defects induced by
overexpression of the different USB1 variants. Scale bar = 250 um. (D) Lateral views live-microscopy 5x magnification pictures of tg(mpx:GFP) uninjected and
injected embryos with 200 pg/e of the respective construct. Obvious morphological alterations are not reported in uninjected and injected embryos. USB1P44t-
overexpressing embryos presented a decrease in neutrophil count in the tail. Scale bar = 250 um. (E) Pigmentation normalized to the tail area and tail area of
morphants expressing the different USBI mRNA variants (n = 4 biological replicates, in orange mean + SEM). Ordinary one-way ANOVA statistical analysis was
performed on log,-transformed data. *P < 0.05, ***P < 0.001, and ****P < 0.0001. Statistically nonsignificant differences were not annotated.
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Provided online is Table S1. Table S1 lists the co-immunoprecipitation data.
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