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MAGIS syndrome: Phenotypes, pathogenesis, and

treatment
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Inborn errors of immunity (IEI) presenting with immunodeficiency and autoimmunity can illuminate pathways essential for
immunocompetence and self-tolerance. We recently characterized a new IEI named MAGIS (“Midline malformations of the
brain, Anterior pituitary gland dysfunction, Growth retardation, Inmunodysregulation/Immunodeficiency, and Skeletal
defects”) caused by heterozygous germline-activating mutations in GNAI2 (encoding the heterotrimeric G protein, G;,). This
disorder demonstrates the central role of G,;, regulation of chemotaxis in humans and a novel pathway by which G proteins
regulate T cell activation. Here, we review the clinical features, current genetic and biochemical understanding, and future
therapeutic considerations for this new syndromic immune dysregulation disorder.

Introduction

The study of inborn errors of immunity (IEI) remains among the
best available tools for understanding how the immune system
functions in humans. Increasingly, immune dysregulation dis-
orders have been recognized as a unique subgroup of IEI that
present with autoimmunity or autoinflammation, often in ad-
dition to immunodeficiency (1, 2). As such, immune dysregula-
tion disorders offer insight into pathways regulating protection
from both infectious diseases and the immune responses nec-
essary to control them. We recently described a new syndromic
immune dysregulation disorder (3), which we term MAGIS, a
mnemonic chosen to capture its salient clinical features (de-
scribed below). While the full biochemical, cellular, and clinical
consequences of MAGIS remain to be uncovered, early investi-
gation of MAGIS has delineated novel pathways of cross-talk
between chemokine receptor signaling and T cell activation,
providing insight into normal immune system biology as well as
potential targets of therapeutic intervention (3). The goals of this
review are to (1) highlight the clinical features of MAGIS so as to
improve recognition and diagnosis of this newly described dis-
order, (2) summarize our current understanding of the genetic
and biochemical underpinnings of MAGIS that contribute to
disease features, and (3) discuss potential treatments on the
horizon based upon this current understanding.

Clinical features
We initially reported 20 individuals from 18 families with
germline-activating mutations in GNAI2, encoding G, (3). Gz

is a heterotrimeric G protein that transduces signals from G
protein-coupled receptors (GPCRs) in response to a wide variety
of extracellular stimuli (4, 5, 6). It is expressed throughout the
body but at high levels within the immune system. Consistent
with the ubiquitous expression of G;, throughout development,
patients harboring these mutations exhibit multisystem devel-
opmental abnormalities and organ dysfunction. This syndrome
has now been named MAGIS, an acronym that denotes five
cardinal syndromic features: Midline malformations of the
brain, Anterior pituitary gland dysfunction, Growth retardation,
Immunodysregulation/Immunodeficiency, and Skeletal defects
(Fig. 1). Despite these core features, diagnosis can be challenging
as MAGIS syndrome presents with considerable phenotypic
heterogeneity. Broadly, nearly all patients display both immune
and nonimmune disease features, but with variable severity.
Nonimmune abnormalities in MAGIS syndrome affect most
organ systems including nervous, endocrine, respiratory, car-
diovascular, gastrointestinal, dermatological, and skeletal sys-
tems in diverse ways (see Supplementary Text 3 and 4 in [3] for
more detail). Among these, growth retardation is most penetrant
(90%), manifesting as both prenatal intrauterine growth re-
striction (IUGR; 53%) and postnatal short stature (90%), as well
as low serum insulin-like growth factor-1 (8 of 11 tested, 73%)
and growth hormone deficiency (7 of 7 formally tested). Further
endocrinological evaluation has revealed that structural (41%) or
functional (53%) defects of the anterior pituitary gland are
present in 59% of patients. Excluding pituitary and sella turcica
defects, MAGIS patients also exhibit various midline brain
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Figure 1. Clinical features of MAGIS syndrome. The acronym captures five cardinal features, namely, Midline malformations of the brain, Anterior pituitary
gland dysfunction, Growth retardation, Immunodysregulation/immunodeficiency, and Skeletal defects. Percentages indicate frequencies in our patient cohort.
The Latin word magis means “more,” which is helpful in remembering that the GNAI2 mutations in this syndrome are gain-of-function (GOF) (more than WT).

malformations (30%) including agenesis or hypoplasia of the
corpus callosum, cerebellar hypoplasia, pons hypoplasia, and
Chiari I malformations among others. Skeletal defects comprise
diverse craniofacial, appendicular, and axial skeletal dysostoses
affecting 85% of patients and underlie the high prevalence of
dysmorphia (100%). While these four central nonimmune fea-
tures are captured in the MAGIS acronym, it is important to note
that patients can also bear significant cardiovascular, pulmo-
nary, gastrointestinal, genitourinary, and dermatological dis-
ease described elsewhere (3). While some of these other features,
such as cryptorchidism or gut malrotation, are prevalent in the
general population, the presence of extremely rare features,
such as coloboma or subcortical band heterotopia (double cortex
syndrome), should automatically raise suspicion for an under-
lying MAGIS diagnosis.

Immune-mediated disease (95%) is widely present in MAGIS
as both immunodeficiency (90%) and immune dysregulation
(50%; systemic autoinflammation, 15%, autoimmunity, 35%, and
splenomegaly, 35%). In distinction from other, typically loss-of-
function IEI, which predispose affected individuals to a narrow
infectious phenotype or particular mode of exposure (7, 8),
MAGIS appears to confer some susceptibility to a broad range of
common and uncommon microbes. Sinopulmonary (respiratory
tract, 75%; middle ear, 65%; and sinuses, 35%), cutaneous (25%),
and invasive (meningitis, 10%; bacteremia, 20%; and cutaneous
abscess, 15%) infections were the most prevalent sites of infec-
tion resulting from diverse families of bacteria and viruses.
Notably, despite demonstration of a clear leukocyte chemotaxis
defect (detailed below in the section “Biochemical impact of
mutant G, on immunity”), only 25% of our patient cohort was
extensively affected by cutaneous viral infections, primarily
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from human papillomavirus-related warts. Immune dysregu-
lation manifested sporadically in individual patients as life-
threatening lymphocytic infiltration of the brain, lung, or liver,
and macrophage activation syndrome, as well as more commonly
autoimmunity (35%) and splenomegaly (35%). Autoimmune
manifestations included life-threatening autoimmune hemolytic
anemia (20%), autoimmune thrombocytopenia (10%), psoriasis
(10%), and Hashimoto’s thyroiditis, type I diabetes mellitus, alo-
pecia, celiac disease, and autoimmune enteritis in individual pa-
tients to date.

Overall, given the potential for severe immune-mediated dis-
ease, MAGIS patients warrant full immunological workup, even
if they initially present with nonimmune features (see Supple-
mentary Text 5 in [3] for more detail). Such evaluation should
include quantitative immunoglobulins and vaccine titers, with
consideration for immunoglobulin replacement therapy if pa-
tients exhibit low total IgG, nonprotective vaccine responses, or
persistent infectious burden suggestive of defective humoral im-
munity. Considerable inter- and sometimes even intraindividual
variability is observed, as shown in the example for T cells de-
picted in Fig. 2 (see also Fig. S5 in [3] for other immune parame-
ters). Complete blood counts with differentials over time reveal a
trend of high/normal monocytes and neutrophils and low/normal
lymphocytes. Newborn screen for severe combined immunode-
ficiency (SCID) was abnormal in one patient, who had an absolute
T cell count of 0.577 x 103 cells/pl at 7 wk of age increasing to 1.486
x 10? cells/pl 1 mo later (see P13 in Supplementary Text 4, Fig. 2,
and Fig. S5in [3]). In general, lymphocyte immunophenotyping in
peripheral blood demonstrates low/normal T cells often with
improvement with age, low naive-to-memory T cell ratio, and low
B cells with associated low serum IgM. Additionally, mitogen- or
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Figure 2. Variable peripheral blood CD3*
T cell counts in MAGIS patients over time.
Each different colored symbol corresponds to an
individual MAGIS patient in our original cohort,
with beige representing P13. The graph shows
relative values; absolute values, which are usu-
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antigen- induced proliferation studies are typically normal or
increased, consistent with the T cell hyperresponsiveness phe-
notype linked to this disease (see also Fig. S6 in [3]). To the limited
extent that they have been done, clinical tests of complement
function, neutrophil function, and innate immune responses in
MAGIS patients have been normal.

The phenotypic variability in MAGIS can be appreciated by
reviewing intrafamilial cases in the original patient cohort. In
family XIII, both the affected proband (P13) and his father (P14)
carry the Argl79Cys mutation (see Supplementary Text 4 and
Table S2 in [3]). P13 at 2 years of age had ITUGR, congenital heart
valve abnormalities with hydrops fetalis, dysmorphism (retro-
gnathia, high forehead/anterior hairline, low-set ears), short
femurs, hypospadias, severe congenital sensorineural hearing
loss, neurodevelopmental delay, behavioral abnormalities,
stereotypy, small pons and thin corpus callosum, feeding diffi-
culties (constipation, gastroesophageal reflux), postnatal growth
delay, and multiple neonatal infections including urosepsis with
pan-lymphocytopenia. By contrast, his father has dysmorphism
(midface retrusion, high forehead/anterior hairline, posteriorly
rotated ears with other pinna abnormalities, upslanting palpe-
bral fissures, finger clinodactyly), osteoporosis, cryptorchidism,
hearing loss with vestibular dysfunction, neurodevelopmental
delay with borderline intellectual disability, epilepsy, migraine
headaches, anxiety, and a midline arachnoidal cyst. P14 also had
growth delay with short stature, an annular pancreas with
malrotation of the bowel and esophageal hiatal hernia, gas-
troesophageal reflux with aspiration pneumonias, recur-
rent infections (sinusitis, otitis media, tonsillitis, paronychia;
lymphocyte numbers not measured), and celiac disease. Overall,
while both patients share similar dysmorphic features, external
genitalia defects, growth impairment, neurodevelopmental de-
lays, and recurrent infections, some abnormalities were carried
by only one individual, such as the heart valve defects in P13 or
the anatomical gastrointestinal defects in P14.
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Another illustrative example is family XVII, in which two
affected brothers (P18, P19) carried the Argl79His mutation
(see Supplementary Text 4 and Table S2 in [3]). P18 has
dysmorphism (micrognathia, high anterior hairline, low-set
ears), cryptorchidism, inguinal hernia, pelvic kidney, child-
hood failure to thrive with adult short stature, arthritis, gout,
suspected osteoporosis, chronic diarrhea, sensorineural hear-
ingloss, compensated hypothyroidism, anxiety, depression,
asthma, recurrent infections (otitis media, croup, pharyn-
gitis, bronchitis, pneumonia), and dysgammaglobulinemia
(low serum IgM, poor vaccine titers). His deceased brother
P19 had dysmorphism (micrognathia, high anterior hair-
line, low-set ears), cryptorchidism, inguinal hernia, devi-
ated nasal septum, IUGR with childhood failure to thrive
and adult short stature, neurodevelopmental delay, epilepsy,
ataxia, nystagmus, migraine headaches, autism spectrum
disorder, obsessive-compulsive disorder, anxiety, depres-
sion, psychosis, irritable bowel syndrome, mild spleno-
megaly, recurrent infections (otitis media, pneumonia,
bronchitis, sinusitis, shingles), dysgammaglobulinemia (low
serum IgM, low isohemagglutinins, and variably low vaccine
titers), and T cell lymphopenia. Overall, both patients shared
dysmorphism with cryptorchidism, inguinal hernia, chronic
diarrhea, growth delay, anxiety and depression, and recur-
rent infections with dysgammaglobulinemia, but features
only present in one individual include the arthritis in P18 or
the neurodevelopmental delay and T cell lymphopenia in P19.
In summary, in our limited cohort of 20 patients, MAGIS
displayed broad clinical heterogeneity, which is observed
even for relatives carrying the same GNAI2 variant, and which
may pose challenges for early diagnosis. While we observed a
relatively low premature mortality (10% in our original cohort
of 20 patients), disease involvement in multiple organ sys-
tems suggests potential for considerable morbidity particu-
larly during embryonic/fetal development.
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Genetics

The 20 MAGIS patients reported so far represent multiple an-
cestries from around the world (3). Each patient carried an
extremely rare or not previously reported heterozygous mis-
sense variant in GNAI2, with pathogenic predictions by several
computational algorithms validated by extensive biochemical
testing (see section below). All such patient variants are ab-
sent from general population genetic databases except for
rs137853227 (Argl79His), which was found in two individuals in
gnomAD v4.1.0, accessed March 2025 (minor allele frequency
0.000001281, one of African American ancestry and the other of
European ancestry), having unknown affection status. MAGIS
displayed full disease penetrance in the families we studied, with
mutations recurring among unrelated patients often observed at
residues Thrl82 (Thrl82Ala/Ile/Pro in six families) and Argl79
(Argl79His/Cys in seven patients from five families). Most
pathogenic variants occur in a de novo pattern with mutations
detected in several tissues, suggesting the de novo variants
arose in germ cells or early during embryonic development (3).
However, in our patient cohort one family had the Argl79Cys
mutation in father and son, and another family had the Ar-
g179His mutation in two brothers (described in the preceding
section), consistent with an autosomal dominant inheritance
pattern. These observations suggest that additional rare, un-
recognized patients with subclinical disease likely exist in the
general population.

Biochemical impact on mutant G;, activity

Guiz is an o inhibitory (G,;) subunit of heterotrimeric G protein
(Gagy) complexes, which propagate signals from GPCRs (Fig. 3 A)
(4,5, 6). GPCR ligation induces G, to release bound GDP and bind
GTP. The activated G,-GTP subunit then dissociates from the Gg,
complex and from GPCR, enabling both G,-GTP and Gg, to ini-
tiate downstream signals. Eventually, G, hydrolyzes GTP into
GDP, terminating signaling and permitting reassembly of the
inactive Ggg, heterotrimer-GPCR complex (9). The Gg;, amino
acid residues altered in MAGIS patients are highly conserved
across species in other G, (see Fig. S1in [3]) and RAS superfamily
members (10). The patients’ mutations were clustered in the
P-loop and switch regions of the Ras-like domain of G,, which is
critical for guanine nucleotide binding and GTPase activity. Bio-
chemical analysis demonstrated that mutant G, binds GTP up
to 20-fold faster than wild-type (WT) and hydrolyzes GTP up to
100-fold slower than WT Gg;, (3). Furthermore, most mutant
Gqiz proteins are insensitive to inactivation by regulators of G
protein signaling proteins, a family of GTPase-activating pro-
teins (GAPs) that normally accelerate GTPase activity of G
protein (3, 11). Therefore, mutant G, proteins in MAGIS pa-
tients are constitutively activated through multiple mecha-
nisms: faster GTP binding, decreased GTPase activity, and GAP
insensitivity.

It should be pointed out that for the intrafamilial cases dis-
cussed in the above “Clinical features” section, both the Ar-
g179His and Argl79Cys mutant G, proteins impair intrinsic
GTP hydrolysis and hence are “activating” but less severely so
than the other mutants. The Argl79His and Argl79Cys Gy,
proteins bind GTP more slowly than WT Gg;, and remain
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sensitive to the GTP hydrolysis-promoting effects of GAPs (see
Table S2 and Fig. 1, D-G, in [3]). By contrast, other patients’
mutant G, proteins bind GTP faster than WT Gy, and are in-
sensitive to the GTP hydrolysis-promoting effects of GAPs.
These characteristics explain why the Argl79His/Cys variants
can be passed on through successive generations and, while
extremely rare, be found in the general population (see above in
the “Genetics” section).

Biochemical impact of mutant G,;; on immunity
Heterotrimeric G proteins transduce signals intracellularly in
response to a wide variety of extracellular stimuli, including
hormones, neurotransmitters, and chemokines received from
GPCRs (4, 5). G4z is a major mediator of chemokine signaling for
migration of leukocytes (12, 13, 14, 15, 16, 17, 18, 19). Indeed,
MAGIS patients’ T cells and neutrophils exhibit impaired
in vitro and in vivo cellular migration, as well as impaired
chemokine-induced calcium fluxes to multiple chemokines or
other chemoattractants (3). Expressing mutant G, proteins in
healthy control primary T cells or cell lines is sufficient to re-
capitulate the patients’ cellular defects (3). Further investigation
using a bioluminescence resonance energy transfer assay, a
sensitive method for measuring the proximity of labeled pro-
teins to one another, demonstrated that MAGIS mutant proteins
remain predominantly decoupled from GPCRs at steady state (3),
consistent with their biochemically activated state. As such,
mutant proteins are minimally responsive to chemokine re-
ceptor ligation and unable to integrate chemotaxis signals
accurately (Fig. 3 B). Together, these findings support a
chemotaxis defect affecting both myeloid and lymphoid com-
partments to a broad range of chemokines, a cellular finding that
is consistent with other immunodeficiencies to mucocutaneous
bacterial and viral infections (20, 21, 22, 23). These findings also
predict that patients with complete G, deficiency, as yet
unidentified, will share a common mechanism of impaired
chemotaxis due to compromised chemokine receptor signal
transduction, resulting in increased infection susceptibility. The
ubiquitous expression pattern of G, and nonimmune birth
defects seen in MAGIS patients also suggest that chemotaxis of
nonhematopoietic cells may also be affected during embryonic/
fetal development.

One IEI in particular with some parallels to MAGIS is WHIM
(Warts, Hypogammaglobulinemia, Infections, and Myeloka-
thexis) syndrome caused by heterozygous GOF mutations in
the C-terminal end of the G,;,-dependent chemokine receptor
CXCR4. Clinically, MAGIS and WHIM syndromes share some
features, including intermittently present nonimmune features
such as congenital heart and cerebellar birth defects (24, 25, 26,
27, 28). However, a closer look reveals clinical distinctions,
which highlight the two different molecular mechanisms of
disease. Like MAGIS, WHIM is characterized by recurrent bac-
terial and viral mucocutaneous infections including, most no-
tably, human papillomavirus-driven warts—a feature seen in a
significant minority (25%) of known MAGIS patients, albeit to a
less severe degree than has been described for WHIM syndrome
(26, 29, 30). Hypogammaglobulinemia is also present in both
diseases, affecting 20% of known MAGIS patients compared with
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Figure 3. Activating G;; mutations impair G protein cycling for GPCR signaling. (A) Normal WT G,: GPCR ligation (1) activates heterotrimeric G proteins
by exchanging GTP for GDP on the G, subunit (2), causing G, disassociation from the Gg, heterodimer (3), and initiating downstream signaling (4) for cellular
responses such as cell migration in the case of Gq;; (5). To terminate signaling, G, uses its GTPase activity to hydrolyze GTP into GDP (6), allowing the inactivated
Gq to reassemble into the Gqp, heterotrimer and reassociate with a GPCR (7) for a new activation cycle. (B) Mutant G, activating mutations in Gg;, impair
hydrolysis of Gai-bound GTP (1), delaying conversion of G, back into its inactive GDP-bound form (2) and hence Gg, reassociation with the Gg, heterodimer
and GPCR (3). The chronic decoupling of the heterotrimeric G proteins from GPCRs (4) impairs responses to GPCR ligands such as chemokine receptor-

mediated migration (5).

58-89% in WHIM syndrome (31, 32). One hallmark of WHIM
syndrome, myelokathexis, has not been observed in any patients
with MAGIS with the caveat that bone marrow examinations
have been limited (three patients to date), and neutropenia,
which is associated with myelokathexis in WHIM syndrome,
was only intermittently seen in one critically ill MAGIS patient.
The disparity highlights the distinct mechanistic underpinnings
of these two syndromes. While WHIM mutations impair CXCR4
downregulation resulting in constitutive sensitivity to CXCL12-
CXCR4 axis signaling through Gg;, (33), MAGIS results in the
opposite—a constitutive insensitivity to CXLC12-CXCR4 signal-
ing (and to signaling for other Gg;,-dependent GPCRs) due to
Gaiz-GPCR receptor decoupling (3). Thus, mechanistically MAGIS
syndrome presents as a CXCR4 signaling deficiency. This is evi-
denced in the propensity of MAGIS patients to have increased
circulating CXCR4 sensitive cell populations such as neutrophils,
B cells, and monocytes (3).

Beyond immunodeficiency, MAGIS patients also present with
life-threatening autoimmune disease despite normal frequen-
cies of regulatory T cells (CD4*FOXP3*CD25"¢") or autoreactive
B cells (CD19*CD21°CD38") in peripheral blood (3). Instead,
under various TCR-stimulating conditions, T cells from MAGIS
patients show enhanced activation and proliferation, and these
phenotypes can be phenocopied in healthy donor primary T cells
by expressing MAGIS mutant proteins (3). Upon TCR stimula-
tion, the mutant G, proteins do not impact proximal TCR sig-
naling; rather, they promote enhanced RAS activation and
downstream ERK/MAPK and PI3K/AKT/S6 signaling pathways
required for cellular growth and proliferation (3). Utilizing
quantitative proteomics, we identified RASA2, a GAP for RAS, as
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an effector target of Gy, and found that active Gg;, inhibits
RASA2-mediated negative regulation of S6-regulatory signaling
and T cell activation (3). Instead of directly inhibiting RASA2’s
GAP activity toward RAS, the activating mutant G, sequesters
RASA2 toward the plasma membrane (3). This spatial regulation
of the RAS gatekeeper enhances TCR-induced RAS activity re-
quired for T cell activation and proliferation (Fig. 4). In MAGIS
patients with autoimmunity, enhanced RAS activity and re-
sulting T cell hyperresponsiveness may cause breakdowns in
peripheral tolerance, predisposing to autoimmunity and age-
associated lymphocytosis.

Cyclic AMP (cAMP) and MAGIS

Inhibitory heterotrimeric G, proteins (G,;) are named for their
inhibitory effect on adenylyl cyclase (AC), the primary producer
of cAMP (34). Indeed, the activating G, variants in MAGIS
inhibit cAMP production and reduce intracellular cAMP levels
(3) (Fig. 5). cAMP is a ubiquitous second messenger and regu-
lates a broad range of physiological processes including cell
proliferation, migration, metabolism, and many others (35).
cAMP is generated in response to extracellular stimuli, such as
hormones and neurotransmitters, by the effect of stimulatory
heterotrimeric G proteins (Gg) on AC (36). The production of
cAMP is counterbalanced by G/, proteins, which can inhibit
activity of some AC isoforms (37, 38), and by phosphodiesterases
(PDEs), which promote cAMP degradation (39). The cellular
effect of cAMP is highly context-dependent, influenced by the
expression of individual AC isoforms, PDE isoforms, down-
stream effectors, and unique receptor-ligand stimuli (35).
Within T cells, pharmacological elevation of cAMP levels has
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Figure 4. Active Gq;; sequesters RASA2 to promote RAS activation and T cell hyperresponsiveness. (A) In normal T cells, TCR stimulation leads to RAS
activation (1), which drives T cell activation and proliferation (2). RASA2, a GAP for RAS, facilitates the hydrolysis of RAS-GTP into inactive RAS-GDP (3). In this
way, RASA2 functions to inactivate RAS and limit normal T cell responses. (B) Activating mutations in Gg;; sequester RASA2 away from RAS in the Golgi
apparatus (1). Since RASA2 normally accelerates the hydrolysis of RAS-GTP into the inactive RAS-GDP, this sequestration promotes TCR-induced activation of
RAS (2) and downstream signaling required for T cell growth and proliferation. Consequently, in patients with activating mutations in G, the stimulatory
requirement for full T cell activation and proliferation is reduced by increased RAS activation. The enhanced TCR-induced activation and proliferation (3) may

explain the autoimmunity (4) observed in some patients.

been shown to inhibit both chemotaxis (40, 41) and TCR-
induced activation and proliferation, the latter through a well-
described effect on proximal TCR signaling (42, 43).

Given the central role of G,; proteins in cAMP biology and the
centrality of cAMP in myriad cellular responses including cell
migration and T cell activation, we investigated the contribution
of this pathway in MAGIS physiology. To simulate the low in-
tracellular cAMP levels seen in MAGIS patient T cells due to Gg;
activation, we ablated endogenous cAMP production in primary
healthy donor T cells via CRISPR knockout of the major AC
isoforms in T cells (AC3 and AC7) (3). Surprisingly, these ma-
nipulations did not impair T cell chemotaxis nor did they en-
hance T cell activation and proliferation as seen in MAGIS
patient cells. These data suggest the impaired chemotaxis and
T cell hyperresponsiveness of MAGIS syndrome are indepen-
dent of cAMP and related to the mechanisms described above. As
cAMP has many other immune functions including inhibition of
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proinflammatory cytokine production from dendritic cells and
macrophages (44, 45, 46), cytotoxic function of natural killer
cells (47), or antibody responses by B cells (46), further inves-
tigations are necessary to understand the role of altered cAMP
levels in the immune and nonimmune features of MAGIS and
may lead to cAMP-related treatment in this disease.

Possible treatment modalities

Options for treating severe immune abnormalities in MAGIS
may include hematopoietic stem cell transplantation (HSCT).
Replacement with hematopoietic cell progenitors from a healthy
donor could correct the defective leukocyte chemotaxis and
T cell hyperresponsiveness in this disease. Results were en-
couraging for one MAGIS patient who received fully matched
unrelated donor stem cells and achieved full donor chimerism
(see Supplementary Text 4 in [3]). HSCT successfully eradicated
the patient’s granulomatous skin disease caused by vaccine-
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Figure 5. Activating Gq;; mutations inhibit AC’s production of cAMP. (A) Following GPCR stimulation, GTP-bound G subunits promote (1), while GTP-
bound Gg; subunits oppose (2), AC production of cAMP from ATP. The net balance of G4, and the G activities dictates the level of cAMP produced, which then
functions as a second messenger to regulate various cellular responses (3). The extent of cAMP inhibition is limited by the normal cycling of WT Ggj, proteins
into their inactive GDP-bound state (4). (B) Prolonged cycling of activating mutant G, proteins in the patients’ cells disproportionately inhibits AC (1), thereby
decreasing intracellular cAMP levels (2), which results in decreased downstream signaling (3). This may be responsible for other facets of the patients’ clinical

features, such as impaired endocrine responses.

strain rubella virus, as well as his recurrent upper respiratory
tract infections, otitis media, and bronchitis. The patient also
had a history of autoimmune hemolytic anemia, which has re-
mained in remission over 3 years after HSCT although he receives
immunosuppressant medications for chronic graft-versus-host
disease. As expected, HSCT did not affect his nonimmune disease
manifestations including autism spectrum disorder and growth
hormone deficiency. One caveat is that HSCT has generally been
comparatively less successful for autoimmune diseases than
immunodeficiency (reviewed in [48]). Furthermore, HSCT for
autoimmunity has primarily been done as autologous trans-
plants, which would not likely work for MAGIS. Thus, caution
must be taken in drawing conclusions from the limited experi-
ence to date.

Other possible treatment modalities were suggested from our
initial study delineating pathogenic mechanisms of MAGIS. In
our initial characterization of this disease, we were fortunate
that one patient had a protospacer adjacent motif sequence in
her genomic DNA that enabled Cas9/CRISPR-mediated selective
deletion of the mutant but not WT GNAI2 allele. This manipu-
lation was able to correct the T cell hyperresponsiveness in vitro,
although effects on chemotaxis were not tested (3). Fur-
thermore, inhibitors of the RAS/ERK/MAPK and PI3K/AKT
pathways were each able to partially correct the T cell hy-
perresponsiveness in vitro, although both inhibitors were
required for complete correction (see Fig. S17 in [3]). These re-
sults suggest that other treatment options for MAGIS patients
may include gene therapy or combinations of small molecule
inhibitors of the downstream signaling pathways leading to ri-
bosomal S6 protein activation in T cells, such as the mTOR in-
hibitor sirolimus. Alternatively, developing compounds that can
more proximally target the abnormally increased Gg;;-RASA2
interaction in MAGIS T cells may be a considered as a future
potential therapeutic strategy for autoimmunity. It is worth
noting that despite some phenotypic overlap and shared affected
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pathways between MAGIS and WHIM syndromes, WHIM-
specific treatments such as plerixafor or mavorixafor are un-
likely to be useful in MAGIS due to the distinct molecular
mechanisms of these diseases (see the “Biochemical impact”
section above) (49, 50).

Finally, it is possible that the decreased cAMP in MAGIS
contributes to some of the disease features. While we did not
demonstrate a role for cAMP in leukocyte migration or T cell
hyperresponsiveness, the decreased cAMP may exert patho-
genic effects in other cell types. For example, cCAMP seems to
suppress inflammation through its effects on myeloid cells (51),
suggesting that decreased cAMP in those cell types might con-
tribute to exaggerated inflammatory responses in some MAGIS
patients. Small molecule inhibitors of PDE can raise intracellular
cAMP by blocking the degradation of cAMP to AMP. Specific
PDE4 inhibitors have been approved by regulatory agencies for
the treatment of atopic dermatitis, psoriasis, psoriatic arthritis,
asthma, or chronic obstructive pulmonary disease (52). As some
of these conditions are observed in MAGIS patients, normalizing
their cAMP levels by treating with PDE inhibitors might be
considered. Furthermore, it is also possible that the decreased
cAMP is responsible for abnormal functioning of the endocrine
or other systems in MAGIS. If so, PDE inhibitors might have
broader effects beyond the immune system in treating the pa-
tients. However, PDE inhibitors would not correct for abnormal
functioning secondary to developmental birth defects.

Conclusions

MAGIS patients can present heterogeneous clinical features,
most often involving abnormalities of the immune, endocrine,
skeletal, and nervous systems. Rare pathogenic activating GNAI2
mutations responsible for disease can be recurrent and either de
novo or transmitted in an autosomal dominant manner. The
detailed clinical characterization of this disease should facili-
tate identification of other MAGIS patients. Elucidation of the

Journal of Human Immunity
https://doi.org/10.70962/jhi.20250065

920z Ateniged 60 uo 1senb Aq ypd-G9006202 1Ul/6888Y61/590052028/ ¥/ 1 4pd-8lome/yl/Bio sseidnyj/:dny woy papeojumoq

70f9



molecular pathogenic mechanisms suggests several potential
strategies for treating severely affected patients. In particular,
future studies examining how the suppressed cAMP contributes
to inflammatory and nonimmune disease in MAGIS patients
should help clarify whether treating them with available drugs
that increase cAMP levels will be beneficial.
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