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Incomplete penetrance in inborn errors of immunity:
A skeleton in the closet—The sequel

Dusan Bogunovic!®

Primary immunodeficiencies (PIDs), more recently renamed inborn errors of immunity (IEls), are a diverse group of over 550
genetic disorders. They cause clinically apparent immune dysregulation, leading to infections, autoinflammation,
autoimmunity, and cancer. Initially, most IEls were described as Mendelian disorders with complete penetrance, but the
community has now shown that, in most IEls, some individuals harboring disease-causing genotypes display only partial
clinical disease, or no disease at all. Thus, most IEls are actually Mendelian disorders with incomplete penetrance. Despite the
frequency of incomplete penetrance in IEls, the conceptual framework for systematically categorizing and explaining these
occurrences remains limited. Here, | expand on four recurrent themes of incomplete penetrance that we have recently
proposed: genetic variant quality, epigenetic and genetic modification, environment, and mosaicism. For each of these
principles, | review what is known and unknown and propose future experimental approaches to fill the gaps in our
knowledge. I focus on IEls, but these concepts can be generalized to all genetic diseases.

Introduction

Primary immunodeficiencies (PIDs) or inborn errors of immu-
nity (IEIs) are a heterogeneous group of monogenic lesions,
resulting in severe infections, disorders of immune hyper-
activation, or cancers. Since the first descriptions of inherited
immunodeficiency in the 1930-1950s (1, 2, 3, 4, 5), IEIs have, by
and large, been considered to be Mendelian disorders. In the
2010s, with the fall in costs for next-generation sequencing, the
number of genetic errors identified as causing IEIs has grown
exponentially, now exceeding 550 unique entities (6). These
discoveries have often improved patient treatment (7, 8, 9) and
have significantly advanced our understanding of basic and
clinical immunology. However, despite unprecedented suc-
cesses in this field, there is an “elephant in the room”: these
disorders are widely held to be Mendelian, but they mostly
display an imperfect segregation of gene variants with disease
traits.

In genetics generally, the term incomplete penetrance is used
to describe the absence of clinical disease in individuals har-
boring a known disease-causing genotype. This term makes it
possible to get around the problem of our lack of precise un-
derstanding of incomplete penetrance for the moment, while
allowing us to continue to describe genes as Mendelian, albeit
with incomplete penetrance.

Before going into the details, we need to establish with
precision the language and terminology used. Incomplete
penetrance and reduced penetrance are considered here to be

synonymous. As defined above, penetrance is the binary pres-
ence or absence of the disease trait in the presence of the causal
genotype. However, a genetic defect may also present on a scale
of disease severity or with different clinical phenotypes—a
concept known as variable expressivity. Here, I will consider
variable expressivity under the umbrella term incomplete pen-
etrance, as the two phenomena often have largely overlapping
origins. The terms fully penetrant and monogenic are not syn-
onymous, as either may occur in the absence of the other.
However, both these features are often considered necessary for
a trait to be considered Mendelian.

Incomplete penetrance is common (10), but its exact inci-
dence is difficult to determine from published studies. When
considered, penetrance is typically assessed in the relatives of
affected patients, with segregation of the disease traced from the
proband. The reported rates of penetrance of specific IEIs, cal-
culated in this manner, range from extremely low at about 5-
10% (11, 12) to moderate 30% (13) and right up to almost 100% (14,
15). A recent study evaluating 453 patients from 193 families
determined that the highest form of variable disease ex-
pressivity existed in familial lymphoproliferation, autoimmunity
and malignancy STK4 deficiency, DNMT3B deficiency, and ATM
deficiency, while immunological differences were prominent in
syndromic and non-syndromic combined immunodeficiencies
(10). Composite estimates across all IEIs indicate that ~9%
families display some degree of incomplete penetrance (16), al-
though this frequency is probably closer to 20-30% across IEIs,
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givenlikely studies’ limitations. We suggest that there are at
least two inherent biases underlying a pronounced under-
reporting of incomplete penetrance. These biases are: (1) re-
porting bias, due to a failure to pursue the study of new variants
with highly reduced penetrance or to publish the results of such
studies or a failure to pursue the study of already reported
variants or to publish the results for such variants, as they are
already considered to be Mendelian with full penetrance, thereby
reducing the impact of such studies and creating a disincentive for
authors, and (2) ascertainment bias, due to an inability to detect
asymptomatic individuals carrying variants in the general popu-
lation alongside the bias of healthy volunteers representing gen-
eral population in databases.

In population-scale genetic studies generally, beyond the
domain of IEIs, it has been noted that an average individual
possesses ~200 rare variants (17), 50 of which have been re-
ported to drive disease, and yet these individuals remain healthy
(18). Similarly, one study pointed out that about 1in 4,000 adults
caries a variant for a severe Mendelian condition but remains
healthy (19). These studies suggest that the phenomenon of in-
complete penetrance is both widespread and underappreciated.

Due to these biases, more remains unknown than known
about incomplete penetrance across genetics (20, 21, 22, 23, 24).
However, the study of IEIs is blossoming, leading to the re-
porting of ever increasing numbers of cases of incomplete pen-
etrance and the continual emergence of new patterns. Here, I
will review incomplete penetrance across IEIs and wider genetic
fields and continue to develop the four principles of incomplete
penetrance we proposed 5 years ago (25), to continue the de-
velopment of a conceptual framework of incomplete penetrance
in IEIs and beyond. For each principle, as before, I will document
what is known and then what is unknown, proposing testable
hypotheses that could be used to advance our current under-
standing. This evidence, these principles, and new ideas will
help to establish a blueprint for future studies focusing specifi-
cally on incomplete penetrance. These concepts can readily be
generalized to genetic diseases generally, despite our focus here
on IEIs.

Principle I: Genetic variant quality

What is known

The quality of the genetic variant, a term which I use as syn-
onymous to variant severity, can have different effects on its
biochemical, cellular, and clinical penetrance. We, therefore,
need to define these different types of penetrance. Biochemical
penetrance refers to assessments of genetic variation in a test
tube rather than in vivo, in an isogenic system with a readout. A
complete absence of the protein typically results in more serious
biological defects than hypomorphic variants, although there are
exceptions (7). Such biochemical assays may suggest functional
deficits, but such deficits may not be observed in the patient’s
cells. Cellular penetrance refers to assessments of the biological
pathways or processes in which the gene product with a variant
is involved, in cells isolated from the patients themselves, often
measured when cells are studied in isolation with a specific assay
(e.g., the signal transduction pathway of a mutated receptor) in a
non-isogenic system. The cellular phenotype mostly depends
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directly on the severity of the genetic defect and is usually
strongly correlated with biochemical results. Furthermore, clini-
cal penetrance mostly tracks biochemical and cellular penetrance,
although this is not always the case. We can, therefore, propose
a simple model: the severity of the genetic defect determines
biochemical dysfunction, which governs the degree of pertur-
bation in immune cells and, therefore, the propensity for clinical
manifestations.

This model holds for a few genetic disorders. One of the
principal examples is IFNGRI1 deficiency, the first specific ge-
netic etiology of Mendelian susceptibility to mycobacterial dis-
ease due to either environmental mycobacteria (EM) or bacille
Calmette-Guerin (BCG) immunization (26, 27) to be described.
Complete deficiency due to autosomal recessive (AR) IFNGRI1
defects invariably results in BCG or EM infections by the age of
5 years, and clinical penetrance is complete (28, 29). By contrast,
subjects with partial IFNGRI deficiency, which is typically au-
tosomal dominant (AD), often remain asymptomatic for longer
periods of time, have milder disease, or may, in some cases,
never develop disease (30, 31, 32). By inference, with subsequent
experimental demonstration, these AD forms are characterized
by the retention of some activity when IFN-vy signaling is assayed
in patient cells in vitro (30, 31). Some activity is better than none,
and the retention of higher levels of activity is associated with a
lower observed penetrance.

A similar situation has been observed for STATI1 loss-of-
function (LOF) defects. AR complete deficiency with a complete
absence of type I-1II interferon signaling leads to the complete
penetrance of lethal intracellular bacterial and viral infections
(33, 34, 35). By contrast, AR partial deficiency, with low levels of
signaling, leads to penetrant but milder intracellular bacterial
disease (36, 37, 38), and AD forms with LOF point variants re-
taining some function cause predominantly mycobacterial dis-
ease, but with incomplete penetrance (33, 34, 39, 40, 41). These
findings demonstrate that incomplete penetrance can be po-
tentiated by partial deficiencies of essential genes but also by
complete deficiencies of nonessential genes of type I-III IFN
signaling, leaving some signaling still intact or allowing another
related pathway to keep some common transcriptional programs
active. This situation can readily be observed in deficiencies of
STAT2, TYK2, IFNARI, and IFNAR?2, in which severe viral disease
affects some but not all individuals, with a greater penetrance
observed for infections with live-attenuated viral vaccines than
for common viral infections of childhood (42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52).

Allele-penetrance associations have also been noted in other
IEIs with infectious phenotype, like CARD9 deficiency (53, 54),
and in other IEIs less clearly associated with infection, including
variants of STAT3 (55), PRFI (55, 56, 57, 58), and AIRE (59, 60).
The functional impact of each variation should be studied in
isolation but, at times, genetics alone can lead the way. For ex-
ample, a study of a cohort of patients with congenital asplenia
due to RPSA variants revealed marked incomplete penetrance,
but with no predicted functional differences between incom-
pletely and fully penetrant variants. However, all the missense
variants with incomplete penetrance were located close to-
gether in the structure, as were those with complete penetrance.
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Similarly a structural defect of the noncoding RPSA mRNA re-
sulted in incomplete penetrance, whereas a noncoding variant
resulting in complete transcript decay conferred complete pen-
etrance (61). These findings suggest that milder hypomorphic
variants probably retain some residual function, which may be
sufficient for normal spleen development in some individuals.
Thus, even in the absence of a full understanding of the effect of
variants, the severity of the defect can be seen to be associated
with its penetrance.

Autoimmune lymphoproliferative syndrome (ALPS) initially
appeared to fit this mold, in that penetrance seemed to be a
function of the location of the FAS variant, the most common
cause of ALPS. Homozygous or compound heterozygous forms of
ALPS-FAS are fully penetrant and particularly severe, with an
early onset and an often lethal outcome (62, 63, 64, 65). Heter-
ozygous forms are less penetrant. There is also an additional
hierarchy among AD variants: missense variants of the intra-
cellular domain are more highly penetrant (63-90%) than those
in the extracellular domain (30-52%). The dominant-negative
(DN) mechanism of intracellular domain variants therefore
leads to more severe apoptosis than the haploinsufficiency
mechanism of extracellular domain variants (66). There is
clearly a relationship between the nature of the variant and
the probability of disease. However, some level of defective
Fas-mediated apoptosis can be identified in almost all af-
fected individuals, for all variants. Finally, some “asymptom-
atic” individuals even display lymphocyte expansions or have
autoantibodies without clinical autoimmunity or true lympho-
proliferation (67, 68, 69). One recent study evaluated over 165
cases of ALPS and not only identified associations between the
domain in which the variant occurred and penetrance but also
suggested additional mechanisms contributing to this extensive
clinical variability, particularly in cases with no correlation be-
tween genotype and phenotype (70). Be that as it may, each
variant requires careful assessment, and determination of the
threshold beyond which subclinical cellular defects become clin-
ically apparent disease is vital for our understanding of this model
and to expand the spectrum of molecular events, which are rarely
mutually exclusive.

What remains unknown and future avenues for research

Despite these examples, the association between the degree of
pathogenicity of a variant and its penetrance has not been clearly
documented. Indeed, this model does not hold if a genetic defect
is complete (deletions, frameshifts, etc.) but has variable pene-
trance. The best studied example of this is provided by CTLA4
haploinsufficiency. Intensive studies in large cohorts have re-
ported no association between genotype and penetrance (71, 72,
73). For example, in a recent analysis, only 90 of 133 subjects
from 54 unrelated families carrying 45 different CTLA4 variants
in the heterozygous state presented features of disease. The
missense, nonsense, or frameshift nature of the pathogenic
variant had no apparent bearing on penetrance. Furthermore,
immunologic phenotyping and in vitro CTLA4 dysfunction re-
sults were similar for both affected and unaffected carriers of the
variants, suggesting complete cellular penetrance (73). How-
ever, cellular penetrance is fully dependent on the phenotype in
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question and the sensitivity of the assay used. Thus, on closer
examination, the loss of surface CTLA4 expression was found to
be less severe in unaffected carriers (73). The degree of CTLA4
perturbation in cells is, therefore, correlated with disease pre-
sentation even though the CTLA4 genotype cannot explain dis-
ease segregation. Along similar lines, a more recent study
suggested that LOF variants of CLEC7A can act as gene modifiers,
accounting for penetrance in some cases (74). Interestingly, a
related defect of T cell regulation constituting a more severe
phenocopy of CTLA4 haploinsufficiency (LRBA deficiency, IPEX)
has been shown to have almost complete penetrance (75, 76).
There are, therefore, probably other disease modifiers, in addi-
tion to CLEC7A variants, that can affect the degree of T reg cell
dysfunction.

Recent work also highlighted that individuals with SPII
(encodes PU.1) pathogenic variants that lead to haploinsufficiency
also have highly reduced penetrance (77). Why this is the
case is still not known. Also very interestingly, recent work
highlighted, atleast in part, why sexual dimorphisms exists
in patients with variants in NFKBI causing common variable
immunodeficiency (CVID). Notably, authors conclude that
autoimmunity in NFKB1 haploinsufficiency females is sec-
ondary to defective XIST-dependent X chromosome inactiva-
tion in T cells (78). Why this happens remains to be molecularly
and biochemically documented.

These and other cases (79, 80, 81) demonstrate that the most
severe genetic defects are not always associated with the greatest
propensity for disease. Alternative hypotheses are, therefore,
required. Complete TBK! deficiency was initially thought to re-
sult in more severe disease than DN variants. However, it was
shown experimentally that DN variants resulted in a more
profound defect of IFN-I induction as, unlike the complete ab-
sence of TBK1 protein, they prevented the recruitment of IKKe,
which could partly rescue the phenotype (7). Indeed, as
shown in previous studies, the most severe genetic variants
may lead to more robust compensatory responses (82, 83).
Transcriptional adaptation—the process by which frame-
shifts/nonsense variants activate the transcription of ho-
mologous genes—may rescue these complete deficiencies
(82, 83). In such cases, whether due to experimental knockout
or disease variants, nonsense-mediated decay triggers an up-
regulation of genes with a similar sequence predicted to have
a partially overlapping function (82, 83). This phenomenon
suggests an enticing and testable hypothesis to account for
incomplete penetrance in asymptomatic carriers of disease-
causing nonsense variants. The ability of this “genomic com-
pensation” to rescue disease phenotypes should be a key focus
of future studies.

Principle II: Epigenetic and genetic modifiers can affect the
penetrance of a variant

What is known

Despite the very sparse experimental evidence, the mechanisms
most commonly proposed to account for incomplete penetrance
are epigenetic regulation and/or potential modifier genes. As
next-generation sequencing (84) becomes more commonplace
and epigenetic techniques are introduced into the study of IEIs,

Journal of Human Immunity
https://doi.org/10.70962/jhi.20250064

920z Ateniged 60 uo 1senb Aq 4pd 49005202 1Ul/6068Y6 |L/¥900520Z8/ ¥/ 1 4pd-8lone/yl/Bio sseidnyj/:dny woy papeojumoq

30f16



evidence is finally being obtained to substantiate these reason-
able presumptions.

We have proposed the concept of autosomal random mono-
allelic expression (aRMAE) (25, 85). Unlike imprinting, in which
one allele—the maternal or paternal allele—is completely si-
lenced throughout the organism, aRMAE results from a somatic
but mitotically stable commitment to biased expression in favor
of one allele rather than the other. De facto, results in tran-
scriptional mosaicisms, as at DNA level, each cell is heterozygous
for the variant concerned, but some cells (a lineage or sub-
lineage) are committed to biased expression of one allele rather
than the other, whereas other cells or lineages continue to ex-
press both alleles. This transcriptional bias may result in dif-
ferent proportions (e.g., 99%, 80%, or 60%) of the transcripts
obtained originating from the paternal or maternal allele, sug-
gesting that the system displays plasticity. We have, thus, pro-
posed the term “transcriptotype” for this situation, which may
differ from predictions based on genotype. In one family with a
JAK1 gain-of-function variant, we documented suppression of
the mutated allele in one healthy relative carrying the variant,
across all cell types, whereas the proband had biallelic expres-
sion in T cells (85). Similarly a complete suppression of the
mutated allele was documented in a family carrying a DN STATI
variant (85). The healthy father was heterozygous for the
dominant allele at DNA level, but his transcriptotype revealed
the presence of the WT mRNA only in all cell types tested,
contrasting with his sick child, who was heterozygous for the
dominant allele at DNA level and had similar levels of both
transcripts in a monocyte subset (but with a suppression of the
mutated allele in T cells). H3K27 methylation and DNA methyl-
ation were suggested as possible mechanisms governing these
processes (85). Screening in healthy individuals suggested that
4% of all IEI genes can display aRMAE in healthy donors. How-
ever, it should be stressed that disease-causing variant alleles
may confer a homeostatic advantage or disadvantage on the host,
and as such, it is likely that significantly more genes causing IEIs
display aRMAE when mutated, resulting in discordant geno-
types and transcriptotypes.

CVID—the most common form of immune deficiency—is
an ideal model for studies of incomplete penetrance. A re-
port on CVID-discordant monozygotic twins suggested that
the twin with CVID displayed higher levels of DNA meth-
ylation in critical B-cell genes (PIK3CD, BCL2L1, RPS6KB2,
transcription factor 3 [TCF3], and KCNN4) (86). Similarly, a
follow-up analysis of 23 CVID patients revealed defective
demethylation of selected CpG sites during the transition
from naive to switched memory B cells (87). More recently
a single-cell epigenomics and transcriptomics census of naive-
to-memory B cell differentiation in CVID-discordant monozy-
gotic twins also suggested a role for epigenetic signatures, such
as DNA methylation and chromatic accessibility (88). Addi-
tional concrete and diagnostic evidence is largely lacking for
CVID, but the hypothesis of a role for epigenetic markers is
particularly attractive given the variable disease expressivity
in CVID.

Epigenetics and the genetic control of epigenetics may,
therefore, play a particularly important role in penetrance.
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Modifier genes. COPA syndrome is an IEI caused by variants
of the COPA gene. It displays AD inheritance with incomplete
penetrance. COPA patients present with interstitial lung disease
and pulmonary hemorrhage, with the subsequent development
of arthritis (89). Interestingly, there is a considerable clinical
overlap between STING-associated vasculopathy with onset in
infancy and COPA syndrome in terms of lung inflammation (90).
In situations such as this, the genetic and biochemical interac-
tions should perhaps be examined closely if they are not already
obvious, as they may have functional consequences leading to
different disease outcomes. Indeed, one common STING allele
has been shown to prevent clinical penetrance for the rare COPA
syndrome. Carriers of the deleterious COPA allele were not af-
fected by the disease if they also carried a fairly common STING
allele, which silenced the biochemical activity of the deleterious
COPA, neatly explaining the observed penetrance (91).

Monogenic variants causing CVID continue to be identified
but account for only a fraction of cases. Not infrequently, in
inherited CVID (~10-20%), a polygenic etiology is suggested
(92). Specifically, deleterious variants of TNFRSFI3B (TACI) are
present in 1% of healthy individuals in public databases but in
10% of those with CVID, suggesting that this genetic background
contributes to CVID but cannot drive the CVID phenotype alone
(93). An enrichment has been observed in variants of other
genes, such as TNFRSFI3B, MSH5 and BAFFR, in cohorts of CVID
patients, but these variants are also present in healthy pop-
ulations and are, therefore, not sufficient to drive disease on
their own (94, 95).

Digenic and, ultimately, polygenic inheritance can help us to
analyze variable disease expressivity and incomplete pene-
trance. The idea is that a variant in cis or in trans disrupts bio-
chemical epistasis, tipping the system toward disease. One
recent study by Nomani et al. (96) did not address the issue of
penetrance directly but suggested that disease inheritance
is digenic in 66% of patients with adult-onset systemic au-
toinflammatory diseases. The combinations of genes involved
in this digenic inheritance were NOD2/MEFV, NOD2/NLRPI2,
NOD2/NLRP3, and NOD2/TNFRSFIA. This discovery paves the
way for detailed penetrance analyses in the context of both di-
genic and polygenic contributions to disease manifestations in
families with these genetic variants. In another study, Massaad
et al. reported that homozygosity for NEIL3 variants caused a
uniformly fatal immune disease (recurrent infections and severe
autoimmunity) in one family, but clinically silent immune dys-
function in an unrelated healthy individual. As an explanation
for this incomplete penetrance, they cited the presence of a
cryptic duplicated homozygous variant of LRBA—defects of
which are known to cause systemic autoimmunity, recurrent
infections, and hypogammaglobulinemia—exclusively in the
affected family. They tested this “double-hit hypothesis;” they
generated Neil3-deficient mice, which, like their human coun-
terparts, displayed no overt signs of autoimmunity until faced
with a second environmental challenge, suggesting that envi-
ronmental effects can potentiate a genotype. Disruption of the
genetic epistasis between NEIL3 and LRBA remains a very attrac-
tive hypothetical mechanism, contributing to differences in dis-
ease penetrance (97).
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Elegant experimental evidence for epistasis in CVID was
obtained with the discovery of a de novo TCF3 variant in a family
already carrying a variant of the CVID-associated TNFRSFI3B
gene. The sick individual with both variants presented a severe
CVID-like disorder and systemic lupus erythematosus. Family
members with the TNFRSFI3B variant only were asymptomatic
or displayed only mild disease, and the son of the proband, who
carried only the TCF3 variant, displayed a partial clinical phe-
notype (98). The effect of having two variants, disrupting epis-
tasis, was documented by clinical scoring for disease severity
and by in vitro studies documenting the biological phenotype.
The effects of these genes converged on immunoglobulin class-
switching pathways, resulting in severe disease.

Similar epistatic regulation was documented in ALPS pa-
tients with variants of both FAS and PRFI (99) or FAS and CASPIO
(100), patients with hyperimmunoglobulinemia D and periodic
fever syndrome with MVK and TNFRSFIA variants (101), patients
with broad susceptibility to infections associated with IFNARI
and IFNGR2 variants (102), patients with X-linked immunode-
ficiency caused by XIAP variant and a CD40LG polymorphism
(103), and pediatric patients with inflammatory bowel disease,
in which a known NOD2 variant probably interacts with variants
of GSDMB, ERAP2, or SECI6A (104).

In most of these cases, one of the two hits had previously been
reported as the causal variant in isolation. This raises an obvious
question, because if synergistic interactions between two or
more genetic loci are required, how can one mutated locus be
responsible? It is possible that these isolated cases due to TCF3
(105) or LRBA alone (75, 76, 106) corresponded to milder forms of
disease or that these “isolated” cases actually involved a second,
unknown gene. Alternatively, these combinatorial genetic
defects may result in blended phenotypes due to overlapping
clinical disease resulting from the co-occurrence of two in-
dependent monogenic defects. Recently unusual features of
Williams-Beuren syndrome (WBS), including recurrent in-
fections and skin abscesses in a child, were shown to be due to
heterozygosity for a 0.53-Mb deletion on chromosome 7q11.23,
corresponding to the known cause of WBS, together with a
biallelic loss of NCF1, leading to AR chronic granulomatous dis-
ease (107). Blended phenotypes are common in clinical genetics
(~5% of rare disease diagnoses) (108, 109) and can affect IEIs
(107, 110, 111). Whether through blended phenotypes or epistasis,
digenic inheritance is increasingly recognized as a determinant
of expressivity and penetrance.

What remains unknown and future avenues for research

Over the 5 years that have elapsed since our initial review, the
numbers of epigenetic and combinatorial genetic hits, each
probably surprising rare, have increased substantially. What
remains largely unknown is the frequency with which common
variants affect the incomplete penetrance of rare diseases. It also
remains largely unknown how common the epigenetic control of
WT vs. mutated allele transcription is in the incomplete pene-
trance of rare diseases. In epistasis, the modifier gene could
plausibly be a common variant with a purely protective (or
pathogenic) role acting in combination with a rare variant. This
has already been shown for COPA, as described above, but is
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probably also the case in a few other monogenic forms of auto-
immunity (e.g., APS1, IPEX, and CTLA4), in which relatively
common autoimmunity-associated HLA alleles probably modify
the risk of developing autoimmunity to specific autoantigens
(59). It has also been suggested that X-linked variable immu-
nodeficiency segregates with relatively common variants of
CD40LG (103) and that susceptibility to familial Mediterranean
fever is modified by interactions of MEFV variants with poly-
morphisms of SAAI (112). Inspired by large studies in other genetic
disciplines in which such occurrences are well documented, fo-
cusing on non-syndromic midline craniosynostosis caused by rare
SMADE6 variants, for example, we should organize large registries
of detailed, well-curated phenotypes (113). This would make it
possible to document and, more importantly, to act on more subtle
clinical signs and symptoms that are probably often missed.
Studies of aggregate mutational burden in IEIs, in which the
composite effects of many minor deleterious variants regulate
disease risk, may indeed be as revealing as such studies have
been for other types of rare diseases (114, 115, 116). Databases,
such as UK Biobank, All of US, and BioMe, should be leveraged
in addition to IEI registries, as the combination of these re-
sources can tell us much about the degree to which clinical
phenotypes are determined by particular genetic variants,
their combined effects, and the situations in which protective
alleles may have a particularly strong effect.

Clinical phenotypes form a spectrum with no clear dis-
tinguishing line between rare and common phenotypes, and the
same is true for genetics. For example, rare variants leading to
complete TYK2 deficiency result in monogenic susceptibility to
Mycobacterium tuberculosis (TB) and Mendelian suspetibility
to mycobacterial disease (MSMD) with relatively high pene-
trance (~80%) (117, 118). Conversely, it was recently demon-
strated that a common TYK2 variant (allele frequency of 4.2% in
Europeans) confers a predisposition to TB ( odds ratio [OR] 89.3)
and MSMD (OR 23.5) in homozygous individuals living in en-
demic regions. The estimated penetrance was ~80% for TB and
0.05% for MSMD (119). This same allele was also shown to pro-
tect against autoimmune diseases (120, 121). Homozygous car-
riers of this allele are not yet considered to have an IEI, but these
studies suggest that susceptibility to common infections can be
caused by relatively frequent AR disorders in a proportion of
patients and that this outcome comes with the upside of pro-
tection from autoimmunity. Increasing numbers of disorders
on the borderline between rare and common or that between
monogenic and polygenic are likely to be identified as se-
quencing databases expand.

Most of the genetic lesions discovered in IEIs were made by
whole-exome sequencing (WES). This technique is limited to
assessment of the coding part of the genome. As whole-genome
sequencing (WGS) gradually becomes cheaper, we are poised to
discover noncoding variants with strong effects on character-
ized disease-causing genes. To date, fewer than a few tens of IEIs
have been shown to be associated with pathogenic variants in
the noncoding genome—and most of these variants are located
proximal to exons (122, 123, 124). Compound heterozygosity in
which a coding sequence variant interacts with a noncoding cis
regulatory variant to cause an IEI have been documented, and
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this remains an underexplored concept (123). Further analyses
of whole-genome sequence databases should not only identify
increasing numbers of causal variants in regulatory regions but
should also reveal noncoding modifier alleles in cis and trans
that modify the expression of just the WT or other known
pathological variants, thereby modifying the transcriptotype
and regulating penetrance. Finally, we hypothesize that there
are also protective noncoding variants that can rescue aberrant
biological features when present in cis or in trans. Given the
complexity of these interactions, their discovery is likely to
prove difficult, but not impossible.

Studies of copy number variants (CNVs) have fallen out of
fashion with the replacement of single nucleotide polymophism
(SNP) arrays by WES. Only with WGS advances allowing better
CNV calls will this line of research return to the fore. A few
global and site-specific CNVs have already been linked to IEIs
(125, 126, 127, 128, 129). However, the impact of CNVs on pene-
trance remains unexplored and will require cutting-edge studies
technically equipped to capture large structural variations.

We think that these mechanisms are probably only the tip of
the iceberg, but they will nevertheless help us to unravel the
truth about incomplete penetrance.

Principle Ill: Environmental exposures

What is known

Differences in environmental exposure are frequently high-
lighted as putative explanations for incomplete penetrance,
albeit with limited evidence. The combined effects of the
environment—often referred to as the “exposome”—constitute
an area of active research extending well beyond the issue of
penetrance. The exposome encompasses many factors relevant
to the immune system, including infections, resident microbes,
diet/metabolism, irradiation, air quality, injury, and sun ex-
posure. Many of these environmental factors are sufficient to
trigger a secondary immunodeficiency in previously healthy
individuals (130). However, our knowledge of the effects of
environmental modifiers on penetrance in IEIs remains very
limited.

Environmental factors are most easily understood in the case
of susceptibility to infection. Put simply, individuals harboring
variants that confer susceptibility to specific pathogens do not
present disease if they are never exposed to the pathogen con-
cerned. This is most readily appreciated in individuals with
variants linked to BCG disease who do not develop disease if they
are not vaccinated with BCG (131). By definition, if a susceptible
individual does not encounter the infectious agent to which they
are susceptible, they cannot become sick.

One very nice example in which the environment (although it
is difficult to prove causality) may have contributed to incom-
plete penetrance is deficiencies of TIRAP, a critical adapter in
TLR-based sensing. Despite having a complete innate immune
defect, only one in eight TIRAP-deficient homozygotes studied
presented staphylococcal disease. In the other seven, acquired
anti-lipoteichoic acid antibodies (LTA Abs) (staphylococcal LTA
Abs) rescued TLR-dependent susceptibility to Staphylococcus
(132). The idea that adaptive immune responses can compen-
sate each other is well documented for invasive pneumococcal
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disease due to deficiencies of IRAK4 and MyD88. Immunity
changes with age, and age is known to be a major determinant of
disease. Penetrance is highest at the age of 10 years, but rates of
invasive pneumococcal disease recurrence and mortality fall
with age, presumably due to acquired antipneumococcal im-
munity (133). Paradoxically, this example suggests that the very
environmental exposures thought to trigger clinical presentations
can also be protective.

Infection may also worsen immune dysregulation after the
acute infection phase. It is now generally accepted that pathogen
infections are often the event triggering autoimmune and au-
toinflammatory disorders. This notion is illustrated well by
familial hemophagocytic lymphohistiocytosis (HLH), a disease
characterized by excessive macrophage and lymphocyte activity
that used to be fatal. Individuals with disease-causing variants
display this hallmark cellular dysfunction early in life, before the
development of clinical disease (56). Furthermore, upper res-
piratory or gastrointestinal tract infections tend to occur at
about the onset of HLH (134). This suggests that an infectious
trigger may be required for the disease to occur. Variable disease
presentations are, thus, a function of exposure to an infectious
agent. Further detailed documentation of the type of infection
and the exact time between infection and disease onset will
probably unravel certain aspects of incomplete penetrance.

Other environmental factors, such as irradiation and che-
motherapy, can also modulate penetrance in IEIs. Individuals
with LIG4 variants, who have DNA repair defects leading to
lymphocyte deficiencies and nonimmune features, are often
healthy until treated with chemotherapy and radiotherapy.
Asymptomatic carriers of LIG4 variants have therefore probably
accumulated two few double-strand breaks to cross the thresh-
old for the development of disease (135). Studies in animals are
beginning to provide experimental documentation of such ef-
fects, as shown in Neil3-deficient mice (97). Another example is
provided by Schimke immune-osseous dysplasia, in which re-
duced penetrance occurs and is not sufficiently accounted for by
biallelic variants of SMARCALL, a conserved chromatin regulator
(136, 137, 138). Studies of Drosophila and murine models of
SMARCALI deficiency have suggested that an additional envi-
ronmental or genetic trigger is required for full disease devel-
opment (139).

What remains unknown and future avenues for research

Immunization with live vaccines both provides answers and
raises questions about the role of environmental exposures in
variable penetrance. BCG vaccination is a particularly good ex-
ample, as all individuals are inoculated with an identical path-
ogen at a very similar age, but we still observe incomplete
penetrance, which is estimated at about 70% in individuals with
IL12RB1 deficiency, suggesting that simple environmental dif-
ferences alone cannot entirely account for this incomplete
penetrance (32). Likewise, some IEI-specific pathogens are
almost ubiquitous. This is the case for herpes simplex en-
cephalitis (HSE), a sporadic disease with known monogenic
etiologies (140, 141). Despite having almost complete cellular
defects of TLR3-dependent IFN immunity, 4/6 TRIF-deficient, 2/3
UNC-93B-deficient, 3/8 TLR3-deficient, 3/4 IRF3-mutant, and
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2/3 TBK1-hypomorphic individuals have been reported to have
developed HSE (142, 143, 144, 145, 146, 147, 148, 149).

In these cases, incomplete penetrance may instead be a
function of other factors, including age at exposure. In support
of a major role for age in determining penetrance, HSE patients
are mostly young and recurrence is rare (140). In this context,
age is essentially simply a reflection of the time to first infection.
What if the tonic type I IFN self-maintenance of neurons shown
to be a hallmark of TLR3 deficiency was not constant but in-
creases while oscillating in a sinusoid manner with develop-
ment? If this were proven to be the case, it would provide an
explanation for differences in penetrance at an early age, when
HSE manifests if HSV-1 infection occurs at a upward or down-
ward point in sinusoid type I IFN production, but not at the peak.
This paradigm of increasing sinusoid type I IFN production
would also help explain waning penetrance with age (143, 147,
150). This mechanism would be independent of the adaptive
immune system, as HSE is not a phenotype of individuals born
without adaptive immunity. In other instances of susceptibility
to viruses and bacteria that are not neurotropic, prior exposure
may, to a greater extent, effectively immunize the individual and
regulate disease penetrance. We suggest that asymptomatic
carriers of variants may have previously been exposed to non-
infectious or exceedingly low doses of a pathogen, insufficient
for productive infection but sufficient to induce adaptive im-
mune responses capable of neutralizing future challenges that
are truly infectious. A similar effect may occur in IL12RB1 defi-
ciency, as the patients that develop BCG disease and those with
environmental mycobacteriosis tend to form two mutually ex-
clusive groups, suggesting that exposure to one pathogen may
immunize against the other (79, 80). Similar mechanisms may
operate in other susceptibilities to infection, but additional ex-
perimental evidence is required to demonstrate this.

Commensal organisms, such as the bacteria, fungi, and vi-
ruses, that naturally colonize our tissues, may be of the utmost
importance. The microbiome is our most abundant source of
exposure to microbes, and our symbiotic relationship to the
microbiome is therefore of considerable importance. Early ex-
periments in which the gut bacterial microbiome was eliminated
with a cocktail of antibiotics ultimately resulted in higher levels
of inflammation than in untreated animals, suggesting a true
homeostatic function. In the last 2 decades, the microbiome has
proved a major determinant of immune function and disease
(151, 152). Despite these strong associations, the relevance
of the microbiome in IEIs—the most extreme immune system
diseases—remains unknown. Recent studies demonstrating
changes to the bacterial microbiota in CVID and their correlation
with immune activation and certain symptoms have begun to
scratch the surface, but the direction of causality remains
unclear (153, 154, 155). We suggest that the bacterial, viral,
and fungal biota regulates the penetrance of IEIs by shaping
relative innate and/or adaptive tolerance and reactivity. The
divergence of the microbiome with geography and diet may
underlie the variability of IEI phenotypes across populations
with similar monogenic lesions. Detailed future studies are
required to document the types and quantities of microbiota
in IEI cohorts.
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Our environment, which is continuing to change, is very
different from that in which our ancestral immune system
evolved. Six years ago, SARS-CoV2 was not present, and just a
century ago, 30-50% of us would not have lived beyond early
childhood, as death from infection was 200 times more frequent
(156). It seems likely that a study on the genetics of infectious
disease a century ago, with the tools of today, would have
identified far more common alleles as casual. However, today,
these genetic susceptibilities, which we refer to as common
variants, are probably masked by the protective effects of good
sanitation, vaccination, and antibiotic use. Perhaps we should
consider all these potential susceptibility alleles in isolated sys-
tems (as we have mapped the key genes), as this would un-
doubtedly be informative and improve our understanding of
incomplete penetrance. Conversely, the recent development of
immunosuppressant use in transplantation, immunology, rheu-
matology, dermatology, and neurology may reveal new and old
genetic susceptibilities with surprising frequencies and patho-
gen specificities.

Principle IV: The mosaicism of disease-causing alleles reduces
clinical penetrance

What is known

But it is even more complicated than that. Up to this point in the
discussion, we have assumed that all the cells in an affected
individual carry the same variant. However, genetic differences
between cells occur at a surprisingly high frequency within in-
dividuals. Genetic mosaicism originates from post-zygotic (de
novo) variants that arise during the embryonic or postnatal
period. The occurrence of such mosaicism in IEIs was initially
thought to be rare, but it has since been found to be rather
common. A recent systematic analysis across IEIs by targeted
deep sequencing in 128 families estimated the rate of mosaicism
at 23.4% (157). In the last 5 years alone, the number of mutated
genes with mosaicism shown to cause IEIs has almost doubled,
bringing the count to over 20 (158, 159). Interestingly, some of
these variants cause disease in the mosaic state, as opposed to the
mosaic and germline states, presumably due to a strong germline
impact.

Disease onset and/or severity are variable in cases of mosa-
icism, as a direct consequence of gene dosage, the tissue affected,
and time since somatic variant generation. Incomplete pene-
trance in mosaic IEIs was first documented in an extraordinary
case of delayed-onset ADA deficiency, which is typically a severe
form of SCID, during the 1980s and 1990s. ADA mosaicism was
observed directly in peripheral blood cells and ADA-normal
populations gradually came to predominate over time, with
the resolution of clinical disease (160, 161, 162). After this dis-
covery, several other documented cases of disease-associated
mosaicism were reported (163, 164), some presenting as mild
or atypical disease phenotypes, including variants of NLRP3 (165,
166), STAT3 (167,168), FAS (169, 170), CYBB (171), TNFAIP3 (172),
TRAPS (173), IL6ST (174), TLR8 (175), and RAPIB (176). It should
be noted that all of these cases predominantly concern disorders
of immune hyperactivation rather than deficiency.

As the number of such cases has grown, the evidence for
mosaicism and pseudogene dosage as a mechanism underlying
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reduced penetrance has also increased, with an apparently good
correlation. In an analysis of 10 families in which one member
carried a postzygotic IEI gene variant, 80% of the mosaic in-
dividuals were asymptomatic. The remaining mosaic individuals
presented with only partial clinical disease, whereas their
progeny with an inherited germline variant displayed full dis-
ease development (157). An evaluation of variant read frequen-
cies in a family with PIK3CD variants revealed that affected
siblings harbored more mutant cells than their mildly affected
father, with allele fractions of 37-54% and 15%, respectively (16).
Conversely, if mutated cells predominate in the relevant cell
compartment, the clinical features of germline and somatic
variant are more similar. ALPS patients harboring FAS variants
in ~100% of their DN T cells display complete disease develop-
ment despite having undetectable levels of the variant in whole
blood (169, 170).

In the realm of new somatic variants of genes causing IEIs
that have never been described in the germline, the best example
is probably that of UBAI variants causing vacuoles, E1-ubiquitin-
activating enzyme, X-linked, autoinflammatory, somatic (VEXAS)
syndrome (177). The clinical signs of VEXAS syndrome overlap
strongly with those of giant cell arteritis, relapsing polychon-
dritis, systemic lupus erythematosus (SLE), and rheumatoid
arthritis (RA). Since its discovery only 5 years ago, hundreds of
patients have been identified, with extremely diverse clinical
disease penetrance, despite the presence of exactly the same
variants in most of these patients (178).

Somatic variants may act as modifiers and, thus, as “second
hits” leading to the manifestation of clinical disease. ALPS pa-
tients have been documented to carry both an inherited heter-
ozygous FAS variant and a somatic event in the second FAS
allele, such as a missense variant, nonsense variant, or loss of
heterozygosity (179, 180, 181). Alternatively, the second hit
may occur at a different locus, as in a recent report of a so-
matic FAS variant occurring together with an existing CASPI0
variant (182). Relatives who did not acquire a second variant
post-zygotically remained asymptomatic or were only par-
tially affected, suggesting an effect of second hit mosaicism on
incomplete penetrance.

Conversely, the acquisition of a somatic variant can also
rescue disease. Such events, often referred to as somatic re-
versions, underlie milder clinical disease or the absence of
clinical disease. A good example is provided by the reversion of
DOCK-8 deficiency, which is commonly, occurring in about half
of all affected patients; this reversion is associated with longer
survival and less severe allergic disease, although preliminary
reports have suggested that infectious disease susceptibility re-
mains the same (183). Full recovery from disease, including in-
fectious phenotypes was reported in a more recent study (184).
There are several other examples of reversions underlying in-
completely penetrant clinical disease, for ADA (162, 185), XLA
(186, 187), WASP (188, 189), leukocyte adhesion deficiency (190),
X-linked immunodeficiency with ectodermal dysplasia due to
variants in NEMO (191), Omenn syndrome with CARDII defi-
ciency (192), IKBKG-associated immunodeficiency (16), and
GATA?2 deficiency (193). Interestingly, these reversions may
even involve second-site variants in the initially mutated gene
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creating altered non-WT, but still functional, gene products
(194). Reversion may also occur via chromosomal and segmental
chromosomal deletions, as shown for the SAMD9 and SAMD9L
alleles, for which this reversion occurs via monosomy 7 (195).
Reversions, thus, represent a common and complex component
of incomplete penetrance.

Most mosaic IEIs appear to remain stable over time (157, 166).
However, somatic reversions conferring a fitness advantage may
enable the selective expansion of the reverted cell population to
reestablish healthy immune cell populations. Documented re-
versions of variants of JAK3, an essential mediator of lymphocyte
development, can repair immune cell proliferation and differ-
entiation. In one family with JAK3 hypomorphic variants, the
asymptomatic sibling displayed CD4* T cell reversion, whereas a
brother without this reversion suffered recurrent respiratory
tract infections (196). One fascinating case was reported in a
warts, hypogammaglobulinemia, infections, and myelokathexis
(WHIM) syndrome patient cured by a process known as chro-
mothripsis, or “chromosome shattering,” in which the chro-
mosomes undergo massive deletion and rearrangement.
Fortuitously, this event deleted the mutated CXCR4 allele in a
single hematopoietic stem cell, which then took over the bone
marrow and reconstituted immune function (197). By contrast, if
there is no selective pressure due to treatment, as in enzyme
replacement therapy in ADA deficiency with reversions or al-
logeneic stem cell therapy, the WT cells appear to lose their
selective advantage and their proportions decline (188). This
example raises the question as to how best to help patients to
help themselves.

What remains unknown and future avenues for research
Mosaicism usually tempers the penetrance of its germline
counterpart, but there are cases in which mosaic variants lead to
an equally or even more severe disease (8, 157, 195, 198, 199). Of
course, the same could be said of the first and only reports of
patients with mosaic variants for which there is no germline
counterpart, suggesting that germline defects may be lethal at
the embryonic or perinatal stages (158, 168, 200, 201, 202, 203).
The application of more recent technologies to larger cohorts and
improvements in tissue sampling will be essential to address
the remaining questions. Low-frequency somatic variants prob-
ably still escape most detection approaches. It is important to solve
this problem as mosaic variants present even at a frequency of
0.5% of tissue can cause disease. This frequency is not simply a
function of total mosaic fractions but also depends on the tissue
analyzed. Many somatic variants are only detectable in specific
immune cell types (158, 165, 168, 170, 178), and many more such
cell type-specific variants than are currently known are likely
to exist. Perhaps the most underexplored variants are extra-
hematopoietic variants, probably due to difficulties with tis-
sue sampling.

As discussed above, going beyond the genotype, mosaicism
can also exist at the transcript level across genetically identical
cells in which one autosome is more transcriptionally active
than the other due to RMAE (204, 205, 206, 207, 208, 209). This
de facto transcriptional mosaicism can occur on top of genetic
mosaicism, which we initially demonstrated in 2020 (210).
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Figure 1. Graphical representation of four incomplete penetrance principles.

Remarkably, up to 10% of the autosomal genome displays this
phenomenon (204).

For these genes, allelic bias (whether a germline or somatic
variant) is established in lineage differentiation via a unique
chromatin signature, DNA methylation, and persists during
subsequent cell divisions (85, 211, 212). Contrasting with the
situation only 5 years ago, we are now increasingly able to un-
derstand the nature of this epigenetic phenomenon, which can
occur on mosaic background as well. We are beginning to grasp
the functional consequences, especially in light of genetic dis-
ease and penetrance. Computational predictions have suggested
that there is an enrichment in monoallelic expression (MAE)
among genes for which gain-of-function variants with AD in-
heritance have been linked to neuropsychiatric disease (213)
Disease-related genes have been shown, experimentally, to un-
dergo MAE (214) and, in 2020, the first gene variant with an
allelic bias was documented in a mosaic patient with JAKI variant
(8). Earlier this year, we showed that MAE can account for dis-
ease penetrance in the members of families with JAKI, STATI,
CARDII, or PLCG2 variants (85). Beyond JAK], it remains to be
seen if MAE occurs in other mosaic patients.

Heterozygosity for variants of genes displaying MAE genes,
thus, create a mixture of WT- and mutant-expressing cells with
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divergent phenotypes in affected individuals. We have now
shown that, by creating this mosaic transcriptotype, MAE can
modulate the functional impact of disease-causing variants in
various ways and proportions (8, 85). MAE no longer a hy-
pothesis can actually help explain phenotypic variation in ge-
netic disease. In AD disease, mosaicism reduces the penetrance
of disease phenotypes in patients. In AR disease, this phenom-
enon is predicted to occur in affected carriers but has not yet
been experimentally demonstrated. We have shown that up to
4% of IEI genes can undergo MAE in healthy individuals. It re-
mains unknown whether variant can itself drive MAE, but it
may increase the proportion of genes capable of displaying MAE,
perhaps to 30-50% of all IEI genes. It remains unclear whether
MAE accounts for only a minority of cases with incomplete
penetrance or whether the documented cases are just the tip of
the iceberg, which on mosaic background will be very exciting to
further document.

Conclusions

Not understanding penetrance in IEIs, and indeed in all genetic
diseases, has hindered advances in human genetics. By doc-
umenting and classifying the cases of variable penetrance in
IEIs, this review, like its predecessor (25), aims to shed light on
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the existing connections and the persistent gaps in our knowl-
edge. It is clear that four major influences continually reduce
penetrance— genetic variant quality, epigenetic and genetic
modifiers, environmental influences, and mosaicism—whereas
many aspects of these four principles, such as genomic com-
pensation, protective variants, subinfectious inoculations,
monoallelic expression, and peripheral tissue mosaics, remain
unexplored (Fig. 1). We mostly discuss these principles sepa-
rately here, but they do work in tandem and interact, as biology
and medicine do not self-classify. We impose classifications to
ensure clarity. The key breakthroughs in these domains do not
come from single sources, but from the combined efforts of large
cohorts, intense studies of single patients, model organisms, and
even cell lines. It is important to keep an open mind, as many
more natural laws remain to be discovered, and there are un-
doubtedly surprises hiding in plain sight. Furthering our un-
derstanding of penetrance will therefore continue to require
both an open mind and rigorous studies.
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