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Mepolizumab treatment in a child with inherited

TYK2 deficiency

Aurélia Alimi*®, TYK2-consortium, Stéphanie Wanin?@®, Stéphanie Boisson-Dupuis>***@®, and Paul Bastard>*>¢*@®

We report the case of a 2-year-old child born to consanguineous
parents of Algerian descent who, from the age of 1 months old
(mo), developed recurrent severe respiratory viral infections
(Fig.1A). During the first 2 years of her life, she was hospitalized
nine times including six in the intensive care unit for virus-
induced acute respiratory distress, with pneumonia due to se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
respiratory syncytial virus, coronavirus OC43, and influenza A
virus (IAV). Each of these episodes was followed by hypereo-
sinophilia (Fig. 1 D). The patient soon developed recurrent epi-
sodes of severe acute respiratory failure with recurrent episodes
of wheezing, without other clinical signs of atopy (Fig. 1 D).
During each hospitalization for acute respiratory failure, she
received systemic steroid treatment, leading to a decrease in
eosinophil counts and respiratory improvement. From the age of
4 mo onward, the patient had hypereosinophilia (up to 10,000/
mm?®) but with normal total IgE levels (Fig. 1 D). Bilateral lung
opacities were observed (Fig. 1 C), and bronchoalveolar lavage at
the age of 8 mo revealed no pathogens and the presence of 4%
eosinophils (while under steroid treatment). Treatment with
corticosteroids at a dose of at least 1 mg/kg/day was required to
obtain an eosinophil count of 2,500/mm?3 after a 12-mo period of
recurrent hospitalizations, but the patient nevertheless contin-
ued to suffer from episodes of virus-induced respiratory dis-
tress. The patient had no atopic or parasitic disease that could
explain the hypereosinophilia (toxocariasis serology and stool
parasitology tests were negative), and hematological causes
of hypereosinophilia were ruled out by an otherwise normal
hemogram and a bone marrow aspirate that was normal (in-
cluding karyotype and reverse transcriptase multiplex ligation-
dependent probe amplification (RT-MLPA) transcripts: negative
for Janus kinase 2, FIP1, and breakpoint cluster region Abelson
murine leukemia [BCR ABL]) except for 14% hypereosinophilia.
Blood immunophenotyping showed: 1.3% CD3*CD4*CD7-

(<physiological threshold of 3%), 0.4% CD3-CD4*CD7-CD2*CD5*
(<physiological threshold of 1%), and 1.5% CD3*CD4-CD8"TCR a
and B (<physiological threshold of 1.5%) cells. There was,
therefore, no phenotypic evidence for a lymphoid origin of the
eosinophilia. Immunophenotyping showed slightly low percen-
tages of naive CD4 and CD8 T cells and central memory CD8
T cells, a high percentage of memory effector CD8 T cells and a
normal percentage of terminally differentiated effector memo-
ries, mild B lymphocytosis with a high percentage of CD19*/
CD27* B cells, and natural killer (NK) lymphocytosis. Compared
with aged-matched controls, deep immunophenotyping by cy-
tometry by time-of-flight also showed a reduced counts of naive
CD4 (679/pl versus a mean of 1,283/ul) and CD8 T cells (354/pl
versus a mean of 607/pl) and an increased count of Th2 cells
(CCR4+CCR6~ CD4 T cells: 120/pl versus a mean of 43/pl).
Functional assays showed normal T cell proliferation in response
to phytohemagglutinin and OKT3 (normal value > 30%), but no
T cell proliferation in response to tetanus toxoid and candidin.
Interleukin 5 (IL-5) was undetectable in blood. Postvaccination
serological test results were normal for diphtheria, tetanus,
pneumococcus, and Haemophilus influenzae. Complement levels
were normal. A tryptase test was negative. IgG, IgA, and IgM
levels were within the normal ranges. IgE levels were 21 kIU/L
(normal). We then performed panel sequencing for eosinophilia,
which revealed a biallelic variant of TYK2 (encoding tyrosine
kinase 2) that was also identified by whole-exome sequencing
(WES), (c.3388C>T, p.Argl130*). No other candidate variant was
identified by WES. This variant was predicted to be loss-of
function due to the creation of a premature stop codon in
the C-terminal part of TYK2, and it was not reported in
gnomAD V4.1.

P1’s variant was confirmed by Sanger sequencing. Both her
parents and her two sisters were heterozygous for the variant,
and her brother was WT and healthy. We investigated the
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Figure 1. Clinical and cellular characteristics of the TYK2 deficient patient. (A) Family pedigree showing the segregation of the TYK2 mutant (MT) allele.
Double lines connect the two consanguineous parents. The closed black symbol indicates the proband (patient 1, P1) with TYK2 deficiency, and the open
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symbols indicate healthy family members. WT: wildtype. (B) Western blotting of the EBV-B cells from P1, showing TYK2 deficiency. The TYK2, STATL, STAT3,
pSTATY, pSTAT3, and GAPDH proteins are shown. The response to IFN-q, IL-23 and IL-10 was similar to that in patients with complete TYK2 deficiency. MW,
molecular weight in kD. (C) Computed tomography of P1 showing bilateral lung opacities. (D) Initial outcome before mepolizumab treatment. RSV: respiratory
syncytial virus; BAL: bronchoalveolar lavage; NIV: noninvasive ventilation; IV: intravenous. AOM: acute otitis media. ARDS: acute respiratory distress syndrome.
VZV: varicella zoster virus. (E) Outcome after mepolizumab treatment. IV IgG: intravenous immunoglobulin; TMP-SMX: trimethoprim-sulfamethoxazole.

Source data are available for this figure: SourceData F1.

functional impact of the variant, using EBV-B cells derived from
P1. Residual amounts of TYK2 protein were detected on western
blots, but at a slightly lower molecular weight. Nevertheless,
responses to IL-23, interferon (IFN)-a, and IL-10 were as weak as
those in a patient with complete TYK2 deficiency (Fig. 1 B),
suggesting that the patient displayed autosomal recessive (AR)
complete TYK2 deficiency, with residual protein expression, as
previously described (1). TYK?2 is one of the four human JAKs. It
is involved in the IL-10, IL-12, IL-23, and type I IFNs (13 IFN-a
subtypes, IFN-w, IFN-B, IFN-¢, and IFN-k) pathways. Complete
TYK?2 deficiency was first described in 2006 in a single patient,
and five forms of AR TYK?2 deficiency have now been described
in 25 patients: (1) complete without and (2) with residual ex-
pression, (3) partial deficiency affecting all pathways, partial
deficiency affecting specifically IL-23 signaling due to (4) rare
and (5) common variants. In these patients, impaired IL-12- and
IL-23-mediated IFN-y production underlie mycobacterial dis-
eases due to tuberculous and nontuberculous mycobacteria. Like
patients with IL-12RP1 deficiency, in whom IL-12- and IL-23-
mediated IFN-y production is abolished, some TYK2-deficient
patients are also susceptible to intramacrophagic pathogens
(Salmonella). Their IL-23-dependent induction of IL-17 is also
weak, accounting for their fungal diseases (Candida). Impaired
responses to type I IFNs underlie severe viral diseases, including
COVID-19 pneumonia, influenza pneumonia, herpes simplex
encephalitis, and adverse reactions to live attenuated vaccines.
Impaired responses to IL-10 seem to be clinically silent. Incom-
plete clinical penetrance has been observed for mycobacterial
and viral diseases, as 48% and 60% of patients, respectively,
develop these diseases. Deep immunophenotyping revealed no
peripheral blood mononuclear cells (PBMC) abnormalities in
patients with the various forms of TYK2 deficiency, indicating
the presence of normal numbers and percentages of the different
myeloid and lymphoid cell subsets (purely adaptive T cells [CD4*
T, CD8" T cells, and their subsets], innate-like adaptive T cells
[Y8 T, mucosal-associated invariant T, and invariant NK T cells],
and innate lymphoid cells [NK, innate lymphoid cell progenitors,
and ILC2]), monocytes, and dendritic cells in three TYK2-
deficient patients (1) and in our patient.

Eosinophil levels were rarely mentioned (2). Our patient
presented virus-triggered lung hyperreactivity and severe hy-
pereosinophilia with very deleterious effects on her quality of
life. She did not suffer from the mycobacterial, fungal, or bac-
terial infections described in previously reported patients (1),
but her susceptibility to a broad range of viral diseases was ex-
plained by defective type I IFN responsiveness. This defect was
probably a triggering factor in her secondary lung hyperreac-
tivity, which became her main condition, perhaps driven by
defective Thl and excessive Th2 differentiation, as previously
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suggested (3). Given the patient’s history of severe viral diseases,
preventive management with infusions of polyvalent immuno-
globulin (IVIg) and trimethoprim-sulfamethoxazole in addition
to inhaled corticosteroids was initiated (Fig. 1 E). IL-5 and IL-6
plasma levels were normal. Other cytokine levels were not
measured. However, due to the dependence on systemic cor-
ticosteroids and the recurrent pulmonary symptoms and
hypereosinophilia, we decided to initiate targeted corticosteroid-
sparing therapy to block IL-5 (Fig. 1 E) (4). Mepolizumab, used for
the treatment of severe eosinophilic asthma, eosinophilic granulo-
matosis, and hypereosinophilic syndrome, was started at the age of
20 mo, at a dose of 40 mg per month delivered subcutaneously. This
treatment was well tolerated clinically. Two weeks after the
first injection, eosinophil counts had fallen strongly, to 300/
mm?, reaching normal levels one month later. The patient
suffered from chickenpox due to varicella zoster virus infec-
tion, leading to a suspension of oral steroid treatment, and had
one episode of respiratory distress due to infection with
parainfluenza virus and Mycoplasma pneumoniae but without
hypereosinophilia after treatment initiation. This patient
with complete TYK2 deficiency, who suffered from severe viral
infections and severe hypereosinophilia causing wheezing res-
piratory disease, is now three years old and remains clinically
well on mepolizumab and IVIg treatment, with an eosinophil
count of 140/mm?3 (Fig. 1 E).

Thus, we report the case of a patient with complete TYK2
deficiency and virally induced hypereosinophilia and respira-
tory failure who responded to IL-5 blockade. Routine assessment
of circulating levels of IL-5 and/or deep immunophenotyping
showing a clear skewing toward a Th2 phenotype can guide
therapeutic intervention toward the use of targeted therapies,
such as treatments targeting IL-5. The mechanism underlying
this abnormal skew toward a Th2 phenotype has yet to be fully
elucidated, but studies in mice suggest that Tyk2 may be in-
volved in regulating the Th1/Th2 balance in favor of Thl and
downregulating eosinophil recruitment in the airway (5). A
similar mechanism may be at work in our patient.
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