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Mepolizumab treatment in a child with inherited 
TYK2 deficiency
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We report the case of a 2-year-old child born to consanguineous 
parents of Algerian descent who, from the age of 1 months old 
(mo), developed recurrent severe respiratory viral infections 
(Fig. 1 A). During the first 2 years of her life, she was hospitalized 
nine times including six in the intensive care unit for virus- 
induced acute respiratory distress, with pneumonia due to se
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
respiratory syncytial virus, coronavirus OC43, and influenza A 
virus (IAV). Each of these episodes was followed by hypereo
sinophilia (Fig. 1 D). The patient soon developed recurrent epi
sodes of severe acute respiratory failure with recurrent episodes 
of wheezing, without other clinical signs of atopy (Fig. 1 D). 
During each hospitalization for acute respiratory failure, she 
received systemic steroid treatment, leading to a decrease in 
eosinophil counts and respiratory improvement. From the age of 
4 mo onward, the patient had hypereosinophilia (up to 10,000/ 
mm3) but with normal total IgE levels (Fig. 1 D). Bilateral lung 
opacities were observed (Fig. 1 C), and bronchoalveolar lavage at 
the age of 8 mo revealed no pathogens and the presence of 4% 
eosinophils (while under steroid treatment). Treatment with 
corticosteroids at a dose of at least 1 mg/kg/day was required to 
obtain an eosinophil count of 2,500/mm3 after a 12-mo period of 
recurrent hospitalizations, but the patient nevertheless contin
ued to suffer from episodes of virus-induced respiratory dis
tress. The patient had no atopic or parasitic disease that could 
explain the hypereosinophilia (toxocariasis serology and stool 
parasitology tests were negative), and hematological causes 
of hypereosinophilia were ruled out by an otherwise normal 
hemogram and a bone marrow aspirate that was normal (in
cluding karyotype and reverse transcriptase multiplex ligation- 
dependent probe amplification (RT-MLPA) transcripts: negative 
for Janus kinase 2, FIP1, and breakpoint cluster region Abelson 
murine leukemia [BCR ABL]) except for 14% hypereosinophilia. 
Blood immunophenotyping showed: 1.3% CD3+CD4+CD7− 

(<physiological threshold of 3%), 0.4% CD3−CD4+CD7−CD2+CD5+ 

(<physiological threshold of 1%), and 1.5% CD3+CD4−CD8−TCR α 
and β (<physiological threshold of 1.5%) cells. There was, 
therefore, no phenotypic evidence for a lymphoid origin of the 
eosinophilia. Immunophenotyping showed slightly low percen
tages of naı̈ve CD4 and CD8 T cells and central memory CD8 
T cells, a high percentage of memory effector CD8 T cells and a 
normal percentage of terminally differentiated effector memo
ries, mild B lymphocytosis with a high percentage of CD19+/ 
CD27+ B cells, and natural killer (NK) lymphocytosis. Compared 
with aged-matched controls, deep immunophenotyping by cy
tometry by time-of-flight also showed a reduced counts of naı̈ve 
CD4 (679/µl versus a mean of 1,283/µl) and CD8 T cells (354/µl 
versus a mean of 607/µl) and an increased count of Th2 cells 
(CCR4+CCR6− CD4 T cells: 120/µl versus a mean of 43/µl). 
Functional assays showed normal T cell proliferation in response 
to phytohemagglutinin and OKT3 (normal value > 30%), but no 
T cell proliferation in response to tetanus toxoid and candidin. 
Interleukin 5 (IL-5) was undetectable in blood. Postvaccination 
serological test results were normal for diphtheria, tetanus, 
pneumococcus, and Haemophilus influenzae. Complement levels 
were normal. A tryptase test was negative. IgG, IgA, and IgM 
levels were within the normal ranges. IgE levels were 21 kIU/L 
(normal). We then performed panel sequencing for eosinophilia, 
which revealed a biallelic variant of TYK2 (encoding tyrosine 
kinase 2) that was also identified by whole-exome sequencing 
(WES), (c.3388C>T, p.Arg1130*). No other candidate variant was 
identified by WES. This variant was predicted to be loss-of 
function due to the creation of a premature stop codon in 
the C-terminal part of TYK2, and it was not reported in 
gnomAD V4.1.

P1’s variant was confirmed by Sanger sequencing. Both her 
parents and her two sisters were heterozygous for the variant, 
and her brother was WT and healthy. We investigated the 
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Figure 1. Clinical and cellular characteristics of the TYK2 deficient patient. (A) Family pedigree showing the segregation of the TYK2 mutant (MT) allele. 
Double lines connect the two consanguineous parents. The closed black symbol indicates the proband (patient 1, P1) with TYK2 deficiency, and the open 
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functional impact of the variant, using EBV-B cells derived from 
P1. Residual amounts of TYK2 protein were detected on western 
blots, but at a slightly lower molecular weight. Nevertheless, 
responses to IL-23, interferon (IFN)-α, and IL-10 were as weak as 
those in a patient with complete TYK2 deficiency (Fig. 1 B), 
suggesting that the patient displayed autosomal recessive (AR) 
complete TYK2 deficiency, with residual protein expression, as 
previously described (1). TYK2 is one of the four human JAKs. It 
is involved in the IL-10, IL-12, IL-23, and type I IFNs (13 IFN-α 
subtypes, IFN-ω, IFN-β, IFN-ε, and IFN-κ) pathways. Complete 
TYK2 deficiency was first described in 2006 in a single patient, 
and five forms of AR TYK2 deficiency have now been described 
in 25 patients: (1) complete without and (2) with residual ex
pression, (3) partial deficiency affecting all pathways, partial 
deficiency affecting specifically IL-23 signaling due to (4) rare 
and (5) common variants. In these patients, impaired IL-12– and 
IL-23–mediated IFN-γ production underlie mycobacterial dis
eases due to tuberculous and nontuberculous mycobacteria. Like 
patients with IL-12Rβ1 deficiency, in whom IL-12– and IL-23– 
mediated IFN-γ production is abolished, some TYK2-deficient 
patients are also susceptible to intramacrophagic pathogens 
(Salmonella). Their IL-23–dependent induction of IL-17 is also 
weak, accounting for their fungal diseases (Candida). Impaired 
responses to type I IFNs underlie severe viral diseases, including 
COVID-19 pneumonia, influenza pneumonia, herpes simplex 
encephalitis, and adverse reactions to live attenuated vaccines. 
Impaired responses to IL-10 seem to be clinically silent. Incom
plete clinical penetrance has been observed for mycobacterial 
and viral diseases, as 48% and 60% of patients, respectively, 
develop these diseases. Deep immunophenotyping revealed no 
peripheral blood mononuclear cells (PBMC) abnormalities in 
patients with the various forms of TYK2 deficiency, indicating 
the presence of normal numbers and percentages of the different 
myeloid and lymphoid cell subsets (purely adaptive T cells [CD4+ 

T, CD8+ T cells, and their subsets], innate-like adaptive T cells 
[γδ T, mucosal-associated invariant T, and invariant NK T cells], 
and innate lymphoid cells [NK, innate lymphoid cell progenitors, 
and ILC2]), monocytes, and dendritic cells in three TYK2- 
deficient patients (1) and in our patient.

Eosinophil levels were rarely mentioned (2). Our patient 
presented virus-triggered lung hyperreactivity and severe hy
pereosinophilia with very deleterious effects on her quality of 
life. She did not suffer from the mycobacterial, fungal, or bac
terial infections described in previously reported patients (1), 
but her susceptibility to a broad range of viral diseases was ex
plained by defective type I IFN responsiveness. This defect was 
probably a triggering factor in her secondary lung hyperreac
tivity, which became her main condition, perhaps driven by 
defective Th1 and excessive Th2 differentiation, as previously 

suggested (3). Given the patient’s history of severe viral diseases, 
preventive management with infusions of polyvalent immuno
globulin (IVIg) and trimethoprim-sulfamethoxazole in addition 
to inhaled corticosteroids was initiated (Fig. 1 E). IL-5 and IL-6 
plasma levels were normal. Other cytokine levels were not 
measured. However, due to the dependence on systemic cor
ticosteroids and the recurrent pulmonary symptoms and 
hypereosinophilia, we decided to initiate targeted corticosteroid- 
sparing therapy to block IL-5 (Fig. 1 E) (4). Mepolizumab, used for 
the treatment of severe eosinophilic asthma, eosinophilic granulo
matosis, and hypereosinophilic syndrome, was started at the age of 
20 mo, at a dose of 40 mg per month delivered subcutaneously. This 
treatment was well tolerated clinically. Two weeks after the 
first injection, eosinophil counts had fallen strongly, to 300/ 
mm3, reaching normal levels one month later. The patient 
suffered from chickenpox due to varicella zoster virus infec
tion, leading to a suspension of oral steroid treatment, and had 
one episode of respiratory distress due to infection with 
parainfluenza virus and Mycoplasma pneumoniae but without 
hypereosinophilia after treatment initiation. This patient 
with complete TYK2 deficiency, who suffered from severe viral 
infections and severe hypereosinophilia causing wheezing res
piratory disease, is now three years old and remains clinically 
well on mepolizumab and IVIg treatment, with an eosinophil 
count of 140/mm3 (Fig. 1 E).

Thus, we report the case of a patient with complete TYK2 
deficiency and virally induced hypereosinophilia and respira
tory failure who responded to IL-5 blockade. Routine assessment 
of circulating levels of IL-5 and/or deep immunophenotyping 
showing a clear skewing toward a Th2 phenotype can guide 
therapeutic intervention toward the use of targeted therapies, 
such as treatments targeting IL-5. The mechanism underlying 
this abnormal skew toward a Th2 phenotype has yet to be fully 
elucidated, but studies in mice suggest that Tyk2 may be in
volved in regulating the Th1/Th2 balance in favor of Th1 and 
downregulating eosinophil recruitment in the airway (5). A 
similar mechanism may be at work in our patient.
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