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Rheumatologic and autoimmune features of inborn 
errors of immunity: Implications for diagnosis and 
management
Joshua M. Tobin1� and Megan A. Cooper1�

Inborn errors of immunity (IEI) are monogenic disorders of the immune system that frequently present with autoimmunity or 
autoinflammation, necessitating multispecialty care. In many cases, patients may present for rheumatologic evaluation prior to 
a genetic diagnosis, highlighting the need for recognition of an underlying IEI with immune dysregulation. Here, we review IEI 
that can present with rheumatologic and autoimmune complications and the role of genetic testing for establishing a 
molecular diagnosis and devising personalized treatment plans to improve patient outcomes.

Introduction
Inborn errors of immunity (IEI) are a broad class of monogenic 
diseases that affect immune system function. The initial dis
covery of IEI in the 1950s–1960s were made in patients with 
infectious susceptibility and primary immune deficiencies; 
however, it is now well recognized that the clinical spectrum 
of IEI encompasses autoimmunity, autoinflammation, bone 
marrow failure, lymphoproliferation, severe atopy, and/or 
malignancy. Several large cohort studies have identified 
autoimmunity, immune dysregulation, or autoinflammation in 
approximately one third of patients with IEI (1, 2, 3), and in
flammatory manifestations were the initial presentation in 18% 
of one cohort (4).

IEI presenting with symptoms that overlap with more com
mon systemic autoimmune conditions represent a significant 
clinical challenge; however, early identification and treatment 
are associated with improved patient outcomes and frequently 
require a multidisciplinary approach. Clinical challenges include 
identification, diagnosis, and immune-modulating therapy for 
patients with rheumatologic disease associated with an IEI. 
Here, we review the IEIs that present with rheumatologic 
manifestations, discuss the clinical approach to identifying IEIs, 
interpretation of genetic testing, and treatments targeted 
toward IEI.

IEI associated with rheumatologic disease
There are more than 500 IEI, most of which are genetically de
fined and classified by the International Union of Immunological 
Societies (IUIS) based on mechanism and associated disease (5). 
IEI can have a wide range of autoinflammatory, rheumatologic, 

and autoimmune presentations affecting nearly every organ 
system, broadly referred to as immune dysregulation (Fig. 1). 
Rheumatologists treat systemic inflammatory conditions in
cluding autoimmunity and autoinflammation causing symp
toms such as fevers, rashes, musculoskeletal disorders, 
vasculitis, autoimmune cytopenias, and end organ dysfunction 
(e.g., lung and kidney disease) (2). Thus, pediatric and adult 
rheumatologists are potentially one of the first specialists to see 
patients with IEI complicated by these conditions. For example, 
patients with NLRC4-associated autoinflammatory syndrome 
presenting with joint pain, fevers, and rashes may be evaluated 
by rheumatologists for systemic lupus erythematosus (SLE) 
or systemic juvenile arthritis. Patients with CTLA4 hap
loinsufficiency may present to a rheumatologist with joint pain 
and interstitial lung disease but also have significant antibody 
deficiency that is important to recognize. Rheumatologists are 
also often part of multispecialty care teams that treat other 
autoimmune and autoinflammatory conditions that may ini
tially present other specialists; for example, patients with 
STAT3 gain-of-function (GOF) syndrome with early onset type 
I diabetes (T1D), arthritis, and autoimmune cytopenias and 
lymphoproliferation may present to endocrinology, rheuma
tology, and/or hematology. Here, we highlight presentations of 
IEI relevant for rheumatologists to recognize.

IEI can be broadly classified as those that have significant 
susceptibility to infection versus IEI with predominantly im
mune dysregulation, including rheumatologic manifestations, 
Although there is overlap between the two, as patients with IEI 
that primarily present with infection may later develop immune 
dysregulation and those with immune dysregulation may be at 
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increased risk for infection, these categories can be useful as a 
framework for clinicians considering therapeutic approaches.

IEI with significant susceptibility to infection
Among the earliest documented cases of rheumatologic pre
sentations in immunodeficiencies were the discoveries of hyper- 
IgM (HIGM) syndrome in 1961 (6, 7) and Omenn syndrome in 
1965 (8). However, we now understand that rheumatologic and 
autoimmune manifestations are widespread in IEI with infec
tious susceptibility (Table 1).

Severe combined immunodeficiency (SCID). SCID is a group of 
IEI defined by a defect in the hematopoietic compartment 
leading to absent or severely impaired T cell development and 
function, often with profound defects in B cells and/or natural 
killer (NK) cells (9). While most patients have typical SCID with a 
near complete loss of T cells, ∼1 out of every 4 SCID patients have 
“leaky” or atypical SCID due to hypomorphic variants in SCID- 
associated genes, with RAG1, ADA, and RMRP accounting for 57% 
of these cases (10). Criteria for leaky/atypical SCID include: low 
T cell count for age (with <0.6 × 103/μl qualifying at any age), 

evidence of an oligoclonal T cell population, and/or either ab
normal T cell receptor excision circles (TRECs) or a low pro
portion of naı̈ve T cells (<20% of CD4+ T Cells) (9). A subset of 
leaky/atypical SCID cases present with Omenn syndrome, with 
classic features of enlarged lymph nodes, hepatosplenomegaly, 
elevated IgE, and erythroderma, due to autoreactive T cells es
caping central tolerance mechanisms in the thymus with ex
pansion in the periphery (11, 12). A similar constellation of 
symptoms can be caused by transplacental maternal en
graftment of T cells in patients with typical SCID due to a 
failure to reject maternal T cells (13, 14), leading to a graft-vs- 
host disease (GVHD)–like phenotype, often including liver 
and gastrointestinal tract involvement, eosinophilia, and 
thrombocytopenia (15).

Newborn screening of TREC has greatly improved the de
tection and early treatment of SCID; however, rare SCID cases 
can be missed by newborn TREC screening, with most of these 
patients having leaky/atypical SCID (16, 17, 18). Therefore, con
sideration of the range of SCID presentations and testing even 
with a normal TREC screen is important.

Figure 1. Rheumatologic and autoimmune manifestations of IEI. ILD, interstitial lung disease. Created in BioRender: Tobin, J. (2025), https://BioRender. 
com/f82e845.
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Combined immunodeficiencies (CID). CID affect the function of 
both B and T cell compartments, generally less severely than 
SCID, and many CIDs have features of immune dysregulation. 
Relevant to rheumatologists, hypomorphic variants in SCID- 
associated genes can cause phenotypes of CID with autoimmu
nity. Hypomorphic RAG variants can allow partially preserved 
recombinase activity (∼5–30%) and result in a later presentation 
of CID with granuloma or autoimmunity (CID-G/AI) (19). CID-G/ 
AI was initially reported among three unrelated girls with 
granulomatous disease in the skin, mucous membranes, ade
noids, and lungs, severe complications due to viral infection 
(20). Additional patients with CID-G/AI have been identified 
presenting with autoimmune conditions, including vasculitis, 
autoimmune cytopenias, and myasthenia gravis (21, 22). Many 
patients have circulating autoantibodies, including neutralizing 
antibodies against IFN-α and IFN-ω (23). Hypomorphic RAG2 
variants have also been associated a HIGM-like phenotype with 
expanded autoreactive B cells (24, 25), with the same variant 
resulting in multiple phenotypes (26).

While loss of T cell function leads to infectious susceptibility, 
residual function of the affected gene may cause immune dys
regulation and autoimmunity. Although patients with ZAP70 
deficiency generally have a SCID-like phenotype, 20% present 
with autoimmunity, most commonly ulcerative colitis and/or 
autoimmune cytopenias (27). In one case, siblings with both 
hypomorphic and hypermorphic variants in ZAP70 developed a 
predominant autoimmune phenotype (28). Similar phenomena 
have also been seen with LAT and SLP76 hypomorphic variants 
(29, 30). Pathogenic variants in PTCRA, which encodes pre- 
TCRa, have recently been reported (31). Four out of 10 patients 
developed lymphoproliferation, infections, or autoimmunity in 
their teenage years or early adulthood, while six were clinically 
asymptomatic.

Classic HIGM, caused by CD40L deficiency (X linked) or, 
rarely, CD40 deficiency (autosomal recessive) (32), presents 
with susceptibility to opportunistic infections due to the in
ability to provide CD40 signaling to dendritic cells and macro
phages, resulting in subsequent deficiencies of IL-12 production 
to induce T cell activation and polarization. (33, 34). Patients 
with HIGM also have an increased risk of autoimmunity, in
cluding T1D, thrombocytopenia, and autoimmune hemolytic 
anemia (AIHA) (35). Patients with HIGM due to deficiencies in 
class switch recombination genes, such as AICDA and UNG, also 
have autoimmunity but have a phenotype more restricted to 
B cell dysfunction without opportunistic infections (36). In
creased titers of circulating autoantibodies in patients with 
HIGM suggest that a loss of B cell tolerance plays a role in the 
development of autoimmunity (37).

Activated PI3K delta syndrome (APDS) is due to autosomal 
dominant GOF variants in PIK3CD (APDS1) or loss-of-function 
(LOF) variants in the PI3K regulator PIK3R1 (APDS2). Patients 
with APDS often have a phenotype resembling common variable 
immunodeficiency (CVID) with reduced naı̈ve B cells and im
paired antibody production, but also have significant lymphad
enopathy, lymphoproliferation, and autoimmunity. Among 53 

Table 1. IEI with predominant susceptibility to infection

Classification Clinical syndrome Rheumatologic/ 
autoimmune 
manifestations

Examples 
of genes 
identified

SCID Omenn syndrome Lymphadenopathy, 
hepatosplenomegaly, 
increased IgE, and 
erythroderma

RAG1, ADA, 
RMRP, 
DLCRE1C, 
LIG4, IL2RG, 
and IL7RA

GVHD of 
transplacental 
maternal 
engraftment

Morbilliform 
erythema, papular 
dermatitis, and 
erythroderma

SCID- 
associated 
genes

CID CID-G/AI Granulomas of the 
skin, mucosa, lungs, 
and adenoids 
ANCA vasculitis 
Autoimmune 
cytopenias 
Myasthenia gravis

RAG1 and 
RAG2

HIGM syndrome Increased circulating 
autoantibodies 
Increased risk of 
diabetes mellitus and 
autoimmune 
cytopenias

CD40L, 
CD40, 
AICDA, 
UNG, MSH6, 
CTNNBL1, 
and APRIL

APDS Lymphadenopathy, 
lymphoproliferation, 
and autoimmunity 
(cytopenias and 
glomerulonephritis)

PIK3CD and 
PIK3R1

Disorders of T cell 
activation

Inflammatory arthritis 
and IBD

ZAP70, 
SLP76, and 
LAT

Deficiencies in thymic 
development

Omenn syndrome 
findings (FOXN1)

FOXN1 and 
TBX1

Chr22q11.2 
microdeletion 
syndrome

Increased likelihood 
of ITP and JIA

Chr22q11.2

WAS AIHA, vasculitis, and 
glomerulonephritis

WASP

Predominantly 
antibody 
deficiency

CVID SLE, IBD, chronic lung 
disease, and liver 
disease (hepatitis C, 
granulomas, and 
idiopathic liver 
disease)

TNFRSF13B 
(TACI), 
TNFRSF13C 
(BAFFR), 
CD19, CD21, 
CD81, 
NFKB1, 
NFKB2, and 
PTEN

Agammaglobulinemia IBD, rheumatoid 
arthritis, fatigue, 
chronic diarrhea, rash, 
and joint pain

BTK and 
SPI1

A summary of the major IEI that present with predominant susceptibility to 
infections, categorized into SCID, CID, CID with syndromic features, and 
predominantly antibody deficiencies. ANCA, antineutrophil cytoplasmic 
antibody; WASP, WAS protein.
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individuals with APDS, >30% of patients presented with auto
immunity, most commonly autoimmune cytopenias; however, 
other presentations of glomerulonephritis and thyroid disease 
were also identified (38).

A subset of CID also affects non-immunologic compartments, 
resulting in associated syndromic features. Wiskott–Aldrich 
syndrome (WAS) is caused by variants in the WAS protein, 
which affects actin polymerization (39). Patients often present 
in infancy with hemorrhage and/or petechiae and eczema (40). 
Autoimmunity is present in ∼40% of patients, including AIHA, 
vasculitis, and renal disease (41). FOXN1 deficiency affects thy
mic stromal cell development. Patients have incomplete or ab
sent T cell development, with one characteristic feature also 
including nail dystrophy (42). Approximately 50% of patients 
present with symptoms resembling Omenn syndrome (43). 
Heterozygous LOF variants in FOXN1 in children can result in 
less severe susceptibility to infection, low levels of TRECs, and 
T cell lymphopenia, and one patient was reported with severe 
thrombocytopenia (44). Adults with the same variant had per
sistent CD8 lymphopenia but improved CD4 counts and reduced 
susceptibility to infection, suggesting FOXN1 gene dosage is im
portant early in life for CD8 development. Chr22q11.2 micro
deletion syndrome, also known as DiGeorge syndrome, is caused 
by a deletion in 22q11.2, with >90% of cases arising de novo (45). 
Patients typically present with congenital abnormalities such 
as cardiac defects, cleft palate, and low-set ears (46). Most 
have some degree of thymic hypoplasia due primarily to hap
loinsufficiency of TBX1 in the deletion (47). Immunologic find
ings include low or absent T cells and susceptibility to infection 
with a significantly increased risk of autoimmunity, as ∼8% of 
patients present with autoimmune manifestations (48), most 
commonly immune thrombocytopenic purpura (ITP) (4% prev
alence) and juvenile idiopathic arthritis (JIA) (2% prevalence 
compared with 0.1% in the general population) (49).

Immune dysregulation is also associated with more common 
syndromic diseases. In particular, patients with trisomy 21 
(Down syndrome) have high rates of autoimmunity, including 
hypothyroidism in ∼1/3 of patients, an increased risk (approxi
mately fourfold) of developing T1D with early onset, and celiac 
antibodies in 10% of individuals (50, 51, 52). Patients have ele
vated levels of multiple cytokines, expanded atypical B cells, and 
abnormal thymic architecture. (53, 54, 55). Additionally, pa
tients generally have elevated type I IFN signaling, in part due to 
the presence of IFNAR1 and IFNAR2 on chromosome 21, and have 
hyperinflammatory responses to SARS-CoV-2 and other viral 
infections (56). JAK inhibitors (JAKinibs) have been proposed as 
a therapy for patients with trisomy 21, similar to those with type 
I interferonopathies (57).

Predominantly antibody deficiencies. Predominantly antibody 
deficiencies encompass a wide range of B cell deficiencies, 
ranging from total lack of circulating immunoglobulins to 
functional defects despite normal circulating immunoglobulin 
levels. A clinical phenotype of CVID, defined by recurrent in
fections with low levels of immunoglobulin and poor vaccination 
responses, is the most common form of antibody deficiency. In 
most cases, a genetic etiology of CVID is not identified; however, 
there are several monogenic IEI with CVID phenotypes, 

including genes encoding for the BCR complex (CD19, CD21, and 
CD81), NFκB-associated defects, or the BAFF receptors (TACI and 
BAFF-R), which confer an increased risk of CVID. A longitudinal 
study of CVID patients over 40 years found that 68% of patients 
have at least one inflammatory or autoimmune complication, 
with ITP, AIHA, and Evans syndrome being the most common 
and reports of other autoimmune disorders such as SLE, in
flammatory bowel disorder (IBD), lung disease, psoriasis, and/or 
liver autoimmunity (58). Notably, nearly 30% of CVID patients 
develop chronic lung disease, and ∼11% develop bronchiectasis 
(58, 59). In a cohort of CVID patients with ITP, 9 out of 15 patients 
presented with ITP an average of 4.5 years prior to their CVID 
diagnosis (60). Therefore, CVID patients may be initially re
ferred to a wide range of clinical specialties, and screening for 
antibody levels and responses should be considered in patients 
with autoimmunity, particularly with recurrent infections and/ 
or when disease does not respond to treatment as expected.

Autoimmunity and autoinflammation are also seen in other 
antibody deficiencies. Patients with X-linked agammaglobulin
emia (XLA) due to BTK deficiency have an increased incidence of 
autoimmunity despite no circulating antibodies. Up to 35% of 
patients with XLA have gastrointestinal manifestations, and 10% 
have diagnoses of IBD or enteritis (61). About half of patients 
(45%) experience arthritis, which often presents prior to their 
diagnosis of XLA (62). Most cases of arthritis in XLA are thought 
to be of infectious etiology; however, case reports have identified 
patients with rheumatoid arthritis and renal disease (63, 64). 
Other forms of agammaglobulinemia may also have increased 
risk of autoimmunity. Among 25 individuals with LOF variants 
of SPI1, 8 patients had IBD, 2 had JIA, and 2 had T1D, suggesting a 
significantly higher prevalence than the general population (65).

IEI in which rheumatologic disease is a primary clinical feature
In some cases, rheumatologic features are the primary clinical 
presentation of an IEI, and affected patients are likely to present 
to and be treated by a rheumatologist prior to a genetic diagnosis. 
IEI with prominent rheumatologic disease can broadly be clas
sified into disorders of immune regulation, innate immune de
fects, and autoinflammatory conditions (Table 2). Nearly half of 
the IEI new to the 2024 IUIS report can include a rheumatologic 
presentation (5), highlighting the necessity for rheumatologists 
to maintain a high index of suspicion for IEI in their patients.

Disorders of immune regulation. Immune dysregulation dis
orders represent a group of IEI primarily characterized by 
breakdown of immune tolerance and clinical features with 
prominent autoimmunity. The initial recognition of these pri
mary immune regulatory disorders (PIRD) were monogenic IEI, 
leading directly to impaired T cell tolerance, including those due 
to defects in AIRE, FAS, and FOXP3, and this group of disorders 
has expanded significantly over the last several decades, in
cluding disorders of cytokine signaling (66). Many PIRD induce 
dysregulation of T cells that leads to lymphoproliferation, au
toinflammation, and autoimmunity. T cell dysregulation can 
occur at multiple stages of T cell development in both T cell in
trinsic and extrinsic manners, including inappropriate thymic 
selection, regulatory T cell (Treg) defects, and cytokine signaling 
abnormalities (Fig. 2).
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Autoimmune polyendocrinopathy candidiasis ectodermal 
dystrophy (APECED) was one of the first documented disorders 
of immune regulation. Originally characterized in the 1960s by 
scientists studying adrenal insufficiency, APECED is an autoso
mal recessive condition caused by LOF variants in AIRE, which 
encodes the transcription factor AIRE that is a core component of 
central T cell tolerance (67, 68, 69). APECED results in autor
eactive T cells, as the lack of AIRE restricts the self-antigens 
expressed by thymic epithelial cells during selection (70). Pa
tients with APECED were originally described to have a triad of 
chronic mucocutaneous candidiasis, hypoparathyroidism, and 
primary adrenal insufficiency (71); however, expanded diagno
sis and recognition of APECED has revealed multisystem auto
immunity, also including autoimmune gastritis, hepatitis, and 
pneumonitis, vitiligo, and Sjogren’s-like syndrome (72). While 
less common, JIA has also been described (73). Interestingly, 
patients with APECED have susceptibility to mucocutaneous 
candidiasis and severe viral infection, including COVID-19, due 
to the presence of autoantibodies to relevant cytokines including 
Th17-associated cytokines and type I IFNs, respectively (74, 75).

Autoimmune lymphoproliferative syndrome (ALPS) is due to 
autosomal dominant and somatic defects in the genes encoding 

FAS or FADD, leading to accumulation of activated T cells that 
have presumably escaped peripheral tolerance mechanisms. 
Patients present with lymphoproliferation and autoimmune 
cytopenias with increased risk of malignancy (76, 77). Approxi
mately 14% of patients with ALPS may experience other auto
immunity, including glomerulonephritis and hepatitis (78).

Immune dysregulation, polyendocrinopathy, enteropathy, 
X-linked syndrome (IPEX) is caused by variants in FOXP3, en
coding the lineage-defining transcription factor of Tregs. The 
lack of functional Tregs results in autoreactive T effector cells 
and multi-organ autoimmunity. Affecting males, IPEX often 
presents with broad multi-organ autoimmunity, commonly au
toimmune enteropathy, T1D, and dermatologic manifestations of 
eczema, dermatitis, psoriasis-like lesions, and alopecia (79). 
Cytopenias and membranous nephropathy are also seen in some 
patients with IPEX (80). Other examples of genes leading to PIRD 
characterized by predominant Treg dysfunction include defi
ciencies of CD25 and STAT5B, both required for Treg differenti
ation, and haploinsufficiency of CLTA4 or deficiency of LRBA and 
DEF6, which encode proteins needed for cell-surface expression 
CTLA4 and Treg function (81, 82, 83). Of particular relevance to 
rheumatologic disease, CTLA4 is highly expressed by Tregs and 

Table 2. IEI with predominant rheumatologic manifestations

Classification Clinical syndrome Rheumatologic/autoimmune manifestations Examples of genes identified

Disorders of immune 
dysregulation

APECED Chronic mucocutaneous candidiasis, 
hypoparathyroidism, primary adrenal insufficiency, 
diabetes mellitus, and JIA

AIRE

ALPS Lymphoproliferation, lymphadenopathy, 
splenomegaly, and autoimmune cytopenias

FAS and FADD

Tregopathies IPEX (T1D, autoimmune enteropathy, eczema, 
dermatitis, alopecia, and psoriasis-like lesions)

FOXP3, CD25, STAT5B, LRBA, CTLA4, and 
DEF6

Multi-organ lymphocytic infiltration

T1D, hypoparathyroidism, and JIA

Disorders of cytokine signaling T1D, cytopenias, SLE, lymphadenopathy, and multi- 
organ autoimmunity

STAT1, STAT3, STAT4, STAT6, JAK1, SOCS1, 
PTPN2, ISG15, and USP18

HLH Fever, cytopenias, elevated ferritin, 
hypertriglyceridemia, and encephalitis

PRF1, STX11, STXBP2, and UNC13D

Innate immune defects Monogenic lupus SLE Complement genes, DNASE1, DNASE1L3, 
TLR7, and UNC93B1

Disorders of complement 
regulators

Vasculopathies and aHUS CFH (factor H), CFI (factor I), CD45 
(membrane cofactor protein), and 
autoantibodies targeting factor H

Autoinflammatory 
disorders

Interferonopathies Severe neurologic findings AGS (TREX1, RNAASEH2A, RNASEH2B, 
RNASEH2C, TREX1, ADAR, and IFIH1), COPA, 
STING1, and ADA2

Skin manifestations (chilblain-like lesions)

Interstitial lung disease

Inflammasomopathies Periodic fevers, peritonitis, synovitis, and pleuritis MEFV (FMF), NLRP3, PLCG2, and NLRC4

Non-inflammasomopathy 
inflammatory disorders

Oral and genital ulcers, arthritis, erythema nodosum, 
recurrent fevers, and very early onset IBD

TNFRSF1A (TRAPS) TNFAIP3 (A20), RELA, and 
IKBKG

VEXAS syndrome Alveolitis, chondritis, thromboembolisms, 
dermatoses, and cutaneous vasculitis

UBA1 (somatic)

A summary of the major IEI that present with rheumatologic, autoimmune, and autoinflammatory conditions as their primary manifestations. FMF, familial 
Mediterranean fever; TRAPS, tumor necrosis factor receptor-associated periodic syndrome.
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functions as an immune checkpoint to inhibit activated T cell 
responses (84). Autosomal dominant CTLA4 haploinsufficiency 
results in lymphocytic infiltration and disease of multiple 
organs, including the arthritis, intestinal, pulmonary, and 
renal manifestations (85, 86). LRBA is required for vesicular 
trafficking of CTLA4 and thus required for its cell-surface 
expression, resulting in similar phenotype as CTLA4 hap
loinsufficiency, although with more prominent lung disease 
(87). Diagnosis of CTLA4- or LRBA-associated disease informs 
therapy given the availability of CTLA4-Ig. Deficiency of PD-1, 
another checkpoint inhibitor, was identified in a patient pre
senting with T1D, hypothyroidism, JIA, and susceptibility to 
tuberculosis infection. Although aggressive antimicrobial ther
apy allowed the patient to recover from abdominal tuberculosis 
infection, he later developed autoantibodies against collagen α3 
and progressed to fatal respiratory failure due to alveolar 
hemorrhage (88).

Immune dysregulation can also occur due to perturbations of 
cytokine signaling. The JAK/STAT pathway plays a critical role 
in propagating signals from multiple cytokines. IEI have been 
associated with most of the STAT genes (89). STAT1 is down
stream of type I and II interferon signaling, and STAT1 GOF 

syndrome was initially discovered as associated with Mendelian 
susceptibility to mycobacterial disease; however, a large cohort 
of 274 patients demonstrated a high rate of autoimmunity in 
∼37% of patients, including T1D, hypothyroidism, cytopenias, 
and SLE (90). STAT3 GOF syndrome was initially reported in a 
cohort with T1D and in children with lymphadenopathy, cyto
penias, and multi-organ autoimmunity (91, 92, 93, 94). Additional 
studies in the decade since its discovery have elucidated a wide 
clinical spectrum of presentations, and cohort study of 191 patients 
with STAT3 GOF identified lymphoproliferative disease as the 
most common manifestation (73%), followed by cytopenias (67%) 
(95). STAT4 GOF was identified in four patients from three fam
ilies who presented in childhood with pansclerotic morphea, in
cluding mucosal ulcerations and skin sclerosis, with some patients 
having additional joint swelling and contractures (96).

JAK1 GOF results in immune dysregulation with atopic der
matitis, autoimmune thyroid disease, and eosinophilia and is 
associated with dominant germline or mosaic variants (97, 98). 
In a large study of JAK1 GOF, the clinical phenotypes of 59 in
dividuals with germline variants suggests an emerging pattern 
of a syndromic phenotype atopy, colitis, and autoimmunity that 
responds to JAKinibis (99).

Figure 2. Mechanisms of T cell dysfunction leading to immune dysregulation. A summary of representative IEI and genetic mechanisms of T cell dys
function leading to immune dysregulation. Created in BioRender. Tobin, J. (2025) https://BioRender.com/o30j099.
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LOF or haploinsufficiency of regulators of STAT signaling can 
lead to enhanced JAK/STAT signaling and similar disease phe
notypes as JAK/STAT GOF disorders. SOCS1 encodes a negative 
regulator of STAT signaling, and patients with SOCS1 hap
loinsufficiency present with autoimmune cytopenias, SLE, and 
polyarthritis, and other autoimmune manifestations (100). Of 61 
patients with SOCS1 haploinsufficiency, 37% presented with 
rheumatologic manifestations, including SLE, Sjogren’s syn
drome, and rheumatoid arthritis. Additionally, many patients 
presented with other autoimmune manifestations, including 
autoimmune cytopenias (39%), lymphoproliferation (37%), and 
inflammatory gastrointestinal manifestation (36%), (101). PTPN2 
encodes a phosphatase that negatively regulates JAK/STAT sig
naling. Pathogenic LOF variants in PTPN2 were initially de
scribed in patients with autoimmune enteropathy and CID, and 
more recently in six patients with SLE and autoimmune cyto
penias (102, 103, 104, 105).

We identified somatic and germline GOF variants in TLR8 
presenting with inflammation, neutropenia, bone marrow fail
ure, lymphoproliferation, caused by TLR8 (INFLTR8), which has 
additional presentations of antibody deficiency, CD8 T cell 
dysregulation, and in some cases large granular lymphocytic 
leukemia (106). TLR8 is expressed exclusively in myeloid cells, 
and in mosaic patients, GOF variants are expressed in <20% of 
cells. These patients have high levels of systemic inflammatory 
cytokines and significant T cell dysfunction with reversal of 
CD4/CD8 ratios and accumulation of antigen-experienced CD8 
T cells that together with the mosaic nature of most TLR8 GOF 
variants suggests a cell-extrinsic effect of myeloid cells ex
pressing mutant TLR8 on the adaptive immune response.

Rheumatologists diagnose and manage macrophage activa
tion (MAS) syndrome in the context of systemic JIA and other 
rheumatologic diseases. There is significant overlap between 
MAS and hemophagocytic lymphohistiocytosis (HLH), either 
primary due to a monogenic IEI or secondary to infection or 
other forms of uncontrolled inflammation, and particularly in 
young children the differential diagnosis between MAS, sec
ondary HLH, and primary HLH can be challenging. Primary 
HLH are a group of IEI categorized as immune dysregulation and 
associated with defects in genes required for T and NK cell cy
totoxicity, leading to an inability to regulate the immune re
sponse to infection; for example, PRF1, STX11, STXBP2, and 
UNC13D (107). Secondary HLH can be seen in many IEI, likely due 
to a combination of inability to control infection and a dysre
gulated immune response, and may present similarly to MAS in 
systemic rheumatologic conditions (108). Some examples of IEI 
that can lead to secondary HLH include STAT1 GOF and LOF, 
STAT2 deficiency, CYBB deficiency (the cause of XL CGD), IF
NAR1 and IFNAR2 deficiencies, and GATA2 deficiency (109, 110, 
111, 112, 113, 114).

Innate immune defects and complement disorders. The innate 
immune system plays a critical role in sensing pathogens or 
damage and providing a first-line response to injury. While 
many IEI affecting the innate immune system cause suscepti
bility to infection, aberrant sensing or responses of the innate 
immune system can also result in significant inflammation and 
autoimmunity. The complement system is critical not only for 

clearing pathogens but also for the removal of apoptotic cells and 
immune complexes. Deficiencies in early components of the 
classical complement pathway, including C1q, C1r, C1s, and C4, 
are associated with monogenic lupus in almost all patients (115, 
116). C2 is the most common complement deficiency (117) but has 
a weaker association to SLE, with an estimated 10–30% of pa
tients developing SLE. Genes involved in the nucleic acid deg
radation pathway, such as DNASE1 and DNASE1L3, can also cause 
monogenic lupus, likely due to the inability to clear DNA from 
apoptotic debris (118, 119, 120). Lastly, GOF variants in TLR7, 
along with UNC93B1 encoding a chaperone protein associated 
with TLR7, are associated with monogenic SLE (121, 122, 123).

LOF variants in regulators of complement, such as CD46, CFH 
(factor H), and CFI (factor I), can result in hyperactivation of the 
complement pathway with increased consumption of C3, and 
patients frequently present with atypical hemolytic uremic 
syndrome (aHUS) (124, 125). Factor I deficiency may also man
ifest with vasculitis and CNS inflammation, and the C5 inhibitor, 
eculizumab, was effective in treating these patients (126, 127).

Autoinflammatory disorders. Autoinflammatory disorders 
occur due to antigen-independent activation of the immune 
system. The characterization of Aicardi–Goutières syndrome 
(AGS) and its association with type I IFN signaling led to the 
discovery and categorization of type I interferonopathies (128, 
129). Patients often present with severe neurologic findings, and 
∼40% have autoinflammatory skin manifestations consisting of 
chilblain-like lesions on the extremities. While many type 1 in
terferonopathies present similarly to AGS, there is heterogeneity 
in their presentations (130). For example, COPA syndrome, 
arising from variants in COPA that encodes an ER transport 
protein, and STING-associated vasculopathy with onset in in
fancy (SAVI) both present with interstitial lung disease, but 
patients with COPA syndrome often have alveolar hemorrhage, 
which is only seen in a handful of patients with SAVI syndrome 
(131, 132, 133). Furthermore, patients with COPA are more likely 
to experience arthritis and have renal involvement, whereas 
patients with SAVI syndrome are more likely to have skin vas
culopathy (134).

Deficiency of ADA2 (DADA2) has a variable clinical presen
tation that in some patients presents with either a vasculopathy 
phenotype resembling polyarteritis nodosum with early onset 
stroke or pure red cell aplasia and bone marrow failure, with 
some patients also having immune deficiency and a CVID-like 
phenotype (135, 136). DADA2 is relatively common compared to 
other monogenic IEI, with an estimated 30,000 cases worldwide 
(137) and should be considered in patients of all ages presenting 
with a consistent phenotype (138). Relevant to rheumatologists, 
an ADA2 functional test can provide rapid results to guide 
clinical management, and TNF inhibitors have shown significant 
success in treating vasculopathy in DADA2 (139).

Inflammasomopathies include monogenic diseases causing 
periodic fever syndromes. Familial Mediterranean fever is 
caused by variants in the MEFV gene, which encode the protein 
pyrin that is important for inflammasome assembly. Patients 
have recurrent fevers and can develop spontaneous painful in
flammatory episodes in multiple organ systems, including per
itonitis, synovitis, and pleuritis (140), and if untreated, can 
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develop amyloidosis and end-organ damage (141). Patients ex
perience periodic episodes of fever that can be associated with 
inflammation in multiple organ systems, including myalgia, 
abdominal pain, and lymphadenopathy, and respond to IL-1 in
hibition (142).

Cryopyrin-associated periodic syndrome encompasses a 
spectrum of phenotypes caused by GOF variants in NLRP3 that 
often present in the neonatal period and can range from severe 
inflammation with fevers and arthropathy to recurrent episodes 
of urticaria-like rashes, sometimes accompanied by fever (143). 
PLCγ2 signaling has broad effects across immune cells, and 
hypermorphic variants in PLCG2 cause autoinflammation and 
PLCγ2-associated antibody deficiency and immune dysregula
tion (144), thought to be at least partially due to hyperactivation 
of the NLRP3 inflammasome (145). NLRC4 GOF results in a 
phenotype distinct from other inflammasomopathies with fever, 
elevated ferritin and triglycerides, and pancytopenia resembling 
HLH that is responsive to anti-IL-18 therapy (146, 147).

Rheumatologists also treat other non-inflammasomopathies 
causing periodic fevers, such as tumor necrosis factor receptor- 
associated periodic syndrome due to variants in TNFRSF1A (148), 
as well as those affecting NF-κB pathways leading to auto
inflammation. Haploinsufficiency of A20 (HA20), encoded by 
TNFAIP3, can manifest with childhood-onset Behçet-like disease 
with additional recurrent fever, lymphadenopathy, skin mani
festations, and autoimmune cytopenias (149). A20 is a ubiquitin- 
editing enzyme that acts as a negative regulator of NF-κB and 
other pathways, including the NLRP3 inflammasome. Loss of 
A20 function results in increased TNF and IL-1β, and therapies 
targeting TNF and IL-1β have been successfully used, as well as 
JAKinibs due to the high type 1 interferon signature (150). 
Haploinsufficiency of p65, encoded by RELA, can present in 
patients with early onset mucosal ulcers, recurrent fevers, and 
leukocytosis (151, 152). Patients with dominant negative variants 
in RELA have additional inflammatory presentations compared 
with RELA haploinsufficiency, including IBD, JIA, and skin 
manifestations, resembling type 1 interferonopathies (153). 
IKBKG encodes NEMO, an adaptor protein essential for NF-κB 
signaling downstream of RIG-I and TLR3. While patients with 
NEMO deficiency present with a CID, alternative splicing var
iants leading to overall increased NF-κB activity and auto
inflammatory syndrome known as NEMO-deleted exon 5 
autoinflammatory syndrome (NDAS) (154, 155). NDAS presents 
with recurrent fever, hepatosplenomegaly, ITP, hypogamma
globulinemia, and nodular skin rashes, with TNF inhibitors 
demonstrating success in treating disease (155).

Somatic variants in the gene encoding the ubiquitin- 
activating enzyme UBA1 cause an adult-onset multisystem 
autoinflammatory disorder, known as vacuoles, E1 enzyme, 
X-linked, autoinflammatory, somatic (VEXAS) syndrome (156). 
Since its original description in 2020, the clinical spectrum of 
VEXAS has expanded considerably and includes recurrent fe
vers, alveolitis, arthritis, chondritis, and thromboembolisms, as 
well as skin manifestations, such as dermatoses and cutaneous 
vasculitis (157). Myelodysplastic syndrome and other hemato
logic disease are also prominent in patients with VEXAS syn
drome and can come before or after autoinflammatory disease. 

Although many IEI present in early childhood, VEXAS syndrome 
highlights the importance of considering the presence of IEI in 
adult patients too and the need to consider somatic mosaicism as 
a cause of disease in patients with immune dysregulation.

Diagnosis of IEI in the rheumatology clinic
Genetic testing for IEI
IEI present with a vast clinical spectrum that encompasses 
nearly every form of autoimmunity and immune dysregulation, 
and many patients may initially present to rheumatology or 
other clinical specialties prior to having a genetic diagnosis. In 
some cases, treatment of rheumatic conditions with immune 
suppression or modulation may reveal an IEI; for example, poor 
B cell reconstitution and hypogammaglobulinemia after receiv
ing B cell depletion therapies (158).

The identification of a genetic diagnosis can alter clinical 
diagnosis, treatment, and family counseling for patients. In one 
illustrative case report, a patient with LRBA deficiency was 
initially diagnosed with JIA. Treatment with NSAIDs, cortico
steroids, and methotrexate was unsuccessful, and the patient 
developed cytopenias resistant to intravenous immunoglobulin, 
rituximab, cyclosporine, and splenectomy. Genetic testing 
identified LRBA deficiency, and the patient was started on tar
geted therapy with abatacept, which led to clinical improvement 
until she received a hematopoietic cell transplant (HCT) (159). 
This and other cases also illustrate that identification of an IEI 
can lead to not only targeted biologics but also HCT as a therapy 
in patients in whom it was not considered to be an appropriate 
therapy.

Genetic testing should be offered to patients regardless of 
family history, and the lack of a family history of similar disease 
should never preclude genetic testing. Many immune dysre
gulation syndromes and other IEI associated with rheumato
logic disease are dominant, and oftentimes patients have de 
novo variants. Alternatively, some disorders have incomplete 
penetrance, where not all individuals carrying the disease- 
causing variant have clinical symptoms; for example, SOCS1 
haploinsufficiency.

Given the monogenic nature of IEI, patients often present at 
very young ages compared to polygenic/complex autoimmune 
disorders. For example, SLE generally affects individuals 
between the ages 15–44 with a female predominance (160), 
whereas monogenic SLE presents in both males and females, 
often prior to the age of 5 years (116). Therefore, early onset 
autoimmunity should raise a high clinical suspicion for IEI. 
Other indications for genetic testing include the development 
of multiple immune dysregulation conditions or autoimmu
nity/autoinflammation refractory to standard of care. How
ever, with increased access to genetic testing and decreasing 
costs, genetic testing may be considered for any patient with 
immune dysregulation.

There are several options for genetic testing in the clinic. 
Sequencing panels focus on genes known to be associated with 
IEI and typically are performed as exome sequencing (ES) with 
reporting of only the genes on the in silico panel. Clinical ES and 
whole-genome sequencing (WGS) are increasingly becoming 
available in clinical practice and, in some cases, favored by 
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insurance companies as more comprehensive testing. WGS has 
the advantage of detecting intronic variants, as well as large 
structural variants (SVs) and copy number variants, although 
functional validation and interpretation of such variants can be 
complicated (161). While WGS is becoming more accessible in the 
clinic, chromosomal microarrays may still be useful in identi
fying large SVs, such as Chr22q11.2 microdeletion. ES and WGS 
have vastly improved our ability to detect genetic variants; 
however, there are some limitations, including difficulty de
tecting somatic mosaicism and resolving sequencing when there 
are pseudogenes, as is the case with NCF1 and IKBKG (162, 163). 
For patients with suspected somatic mosaicism leading to dis
ease, for example, suspected VEXAS syndrome, clinical testing 
may need to be targeted to the potential genes causing disease, 
and UBA1 (the gene associated with VEXAS) is now on many 
clinical deep-sequencing panels. However, diagnostics for most 
mosaic disorders remain limited (164).

Interpretation of genetic testing. Interpreting the results of 
genetic testing can present multiple challenges. While some 
results may demonstrate a variant established to be pathogenic, 
frequently variants of uncertain significance (VUS) are identi
fied, which can be difficult to interpret. It is important to con
sider variants within the context of the clinical presentation and 
evaluate whether the clinical phenotype is consistent with 
known phenotypes for that gene, or whether the known func
tion of the gene could reasonably cause the observed phenotype. 
This is particularly relevant as different variants in the same 
gene may lead to distinct clinical phenotypes, for example, GOF 
or LOF STAT3 and multisystem immune dysregulation or hyper- 
IgE syndrome, respectively. Pathogenic variants causing IEI are 
typically rare in the population and databases such the Genome 
Aggregation Database are useful in identifying variant preva
lence (165). Importantly, a variant may be rare among the gen
eral population but enriched in some populations, indicating 
that the variant is less likely to be pathogenic. Additional tools 
may be helpful for predicting whether a nucleotide change will 
alter protein function, such as CADD, AlphaFold, and others (166, 
167). When possible, evaluating the genetics of both affected and 
unaffected family members can provide valuable information, 
and family testing can be helpful for resolving VUSs. How
ever, incomplete penetrance, especially in the case of hap
loinsufficiency, can make interpretation of inheritance difficult 
(168). Finally, to determine pathogenicity, rigorous laboratory 
testing in a model system should evaluate whether the variant 
alters the function of the encoded protein in a manner consistent 
with disease, highlighting the importance of laboratory research 
in advancing the clinical diagnosis of IEI.

Functional testing. With genetics testing becoming more af
fordable and available in the clinic, a genetics-first approach is 
now often taken to diagnose IEI; however, functional testing still 
plays a vital role in the diagnosis and management of IEI, par
ticularly with inconclusive genetics. Flow cytometry can provide 
insight into which cell types are affected and potentially lead to a 
diagnosis, for example, expanded CD4−CD8−TCRab+ T cells in 
ALPS (169). Some tests can directly assess protein function, such 
as the ADA2 function test (138). Evaluation of serum cytokines 
can also provide additional information to guide treatment 

plans. CXCL9 is a chemokine induced by IFN-γ, and elevated 
levels are associated with a wide range of immune dysregulation 
phenotypes and can help guide treatment decisions, for exam
ple, with JAKinibs or anti-IFNγ antibody. Patients with APECED 
were identified to have a strong IFNγ signature and responded to 
JAKinib treatment (170). For patients with suspected type I in
terferonopathies, clinical and research-based assays to detect 
transcriptional programs induced by type I IFN signaling can 
help to confirm a diagnosis and monitor response to therapy 
(171). Type 1 interferon signatures have also been identified in 
subsets of patients with IEI, for example, patients with HA20 
with a type I IFN signature may respond to JAKinibs (172). In 
cases with inconclusive genetics but suspected IEI, such func
tional testing can help to guide treatment options.

Patients with “inconclusive” genetic testing. Despite ad
vancements in sequencing technology, ∼60–70% of patients 
being evaluated for an IEI do not receive a genetic diagnosis 
(173). Current sequencing technology is best suited to detect 
single-nucleotide variants in coding regions of proteins; how
ever, alternative genetic mechanisms can result in IEI. Somatic 
mosaicism, which occurs when a postzygotic mutation is present 
in only some cells, has been described in multiple IEI, for ex
ample, FAS, TLR8, and UBA1 (174). Current sequencing technol
ogies of ES and WGS may not sequence sufficient depth to detect 
low-frequency somatic variants, or the variant may not be pre
sent in the tissue sequenced (174). Additionally, SVs are difficult 
to detect with targeted panels and ES. WGS can detect SVs and is 
being more commonly used as costs decrease, but interpretation 
of the clinical significance of SVs is challenging (175, 176). WGS 
also has a trade-off of lower depth of coverage (generally ∼30x), 
making it difficult to detect mosaicism. Epigenetic mechanisms 
can also affect the penetrance of IEI. This was recently demon
strated in families heterozygous for a disease-causing variant 
with incomplete penetrance due to autosomal random mono
allelic expression resulting in expression of either the wild-type 
(healthy) or mutant allele in immune cells. Such monoallelic 
expression can make it difficult to identify the inheritance pat
tern and determine pathogenicity of a variant (177). Phenocopies 
of IEI due to circulating autoantibodies targeting self-antigens 
represents another mechanism of disease that can be challeng
ing to diagnose (178, 179). It is also likely that not all IEI are 
monogenic. One study found that ∼5% of cases with molecular 
diagnoses had multiple affected loci (180). Finally, as new dis
eases are discovered and variant detection algorithms continue 
to improve, reanalysis of existing clinical or research data can be 
helpful for patients with inconclusive testing.

Treatment of rheumatologic disease in IEI
Treatment of IEI and rheumatologic conditions associated with 
IEI varies based on clinical symptoms and genetic cause of dis
ease. Particularly relevant for the rheumatologist are the now 
vast array of biologic and other targeted therapies that can be 
repurposed for IEI (181). Prior to a genetic diagnosis, patients 
often fail multiple therapies. More than 30% of patients with 
STAT3 GOF were treated with five or more different therapies 
for their disease (95). In some cases, existing therapeutics have 
been repurposed to allow for precision therapy of IEI, although 
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for the most part clinical trials are lacking to provide support for 
such therapies, and physicians must rely upon evidence from 
case reports. JAKinibs have been used with success in patients 
with a variety of JAK/STAT pathway GOF disorders (182, 183, 
184). CTLA4-Ig fusion protein (abatacept), originally developed 
to treat rheumatoid arthritis, has been repurposed to treat 
CTLA4 haploinsufficiency and LRBA deficiency (185, 186). A 
recent study of 98 patients with LRBA deficiency or CTLA4 
haploinsufficiency demonstrated success of abatacept, with 79% 
of patients exhibiting a complete clinical response (86).

One example of a drug specifically developed, tested, and now 
Food and Drug Administration–approved for treatment of an IEI 
is leniolisib, a small molecule inhibitor of PI3Kδ used to treat 
APDS (187). In the future, identification of additional mecha
nisms of immune dysregulation and dysfunction in IEI will 
hopefully make the development of further therapies possible.

HCT can be considered to treat patients when the defect in the 
hematopoietic compartment is known to cause disease, such as 
early onset autoimmunity in IPEX or lymphoproliferation in 
INFLTR8 (80, 106). There have been tremendous strides in HCT, 
including reduced-intensity conditioning, and while HCT is the 
clearly indicated for some IEIs, such as SCID, its effectiveness for 
other disorders, particularly those with immune dysregulation, 
is less certain (188). There are risks to HCT, including GVHD and, 
in some cases, lifelong immunosuppression (189); however, the 
risks of long-term immune modulation, for example, with a 
JAKinib to treat a JAK/STAT GOF disorder are also unknown. 
Finally, targeted gene therapy may soon present an alternative 
to HCT, including CRISPR-based techniques showing promise in 
treating IEI (190).

Conclusion
IEI can manifest with a wide array of rheumatologic pre
sentations, and some clinical signs, such as early onset, 
treatment-refractory conditions, and multi-organ autoimmu
nity, should raise a high index of suspicion that the patient may 
have an underlying IEI. Prompt recognition and treatment of 
IEI can allow for a precision diagnosis and guide therapeutic 
decisions. Genetic testing should be considered for any patients 
suspected to have a monogenic IEI leading to rheumatologic 
disease. With increased availability of genetic testing and an 
ever-growing number of known monogenic IEI, we may also be 
surprised to find IEI in those patients in whom there is initially 
low clinical concern, potentially avoiding the accumulation of 
autoimmunity and disease burden with early diagnosis.
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