Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Changan Xie
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (2016) 148 (1): 65–76.
Published: 27 June 2016
Abstract
Counting ion channels on cell membranes is of fundamental importance for the study of channel biophysics. Channel counting has thus far been tackled by classical approaches, such as radioactive labeling of ion channels with blockers, gating current measurements, and nonstationary noise analysis. Here, we develop a counting method based on patch-clamp fluorometry (PCF), which enables simultaneous electrical and optical recordings, and apply it to EGFP-tagged, hyperpolarization-activated and cyclic nucleotide–regulated (HCN) channels. We use a well-characterized and homologous cyclic nucleotide–gated (CNG) channel to establish the relationship between macroscopic fluorescence intensity and the total number of channels. Subsequently, based on our estimate of the total number of HCN channels, we determine the single-channel conductance of HCN1 and HCN2 to be 0.46 and 1.71 pS, respectively. Such a small conductance would present a technical challenge for traditional electrophysiology. This PCF-based technique provides an alternative method for counting particles on cell membranes, which could be applied to biophysical studies of other membrane proteins.
Includes: Supplementary data
Journal Articles
Shengjun Wu, Weihua Gao, Changan Xie, Xinping Xu, Christina Vorvis, Farzana Marni, Amber R. Hackett, Qinglian Liu, Lei Zhou
Journal:
Journal of General Physiology
Journal of General Physiology (2012) 140 (1): 29–39.
Published: 11 June 2012
Abstract
Recently, applications of the patch-clamp fluorometry (PCF) technique in studies of cyclic nucleotide–gated (CNG) and hyperpolarization-activated, cyclic nucleotide–regulated (HCN) channels have provided direct evidence for the long-held notion that ligands preferably bind to and stabilize these channels in an open state. This state-dependent ligand–channel interaction involves contributions from not only the ligand-binding domain but also other discrete structural elements within the channel protein. This insight led us to investigate whether the pore of the HCN channel plays a role in the ligand–whole channel interaction. We used three well-characterized HCN channel blockers to probe the ion-conducting passage. The PCF technique was used to simultaneously monitor channel activity and cAMP binding. Two ionic blockers, Cs + and Mg 2+ , effectively block channel conductance but have no obvious effect on cAMP binding. Surprisingly, ZD7288, an open channel blocker specific for HCN channels, significantly reduces the activity-dependent increase in cAMP binding. Independent biochemical assays exclude any nonspecific interaction between ZD7288 and isolated cAMP-binding domain. Because ZD7228 interacts with the inner pore region, where the activation gate is presumably located, we did an alanine scanning of the intracellular end of S6, from T426 to A435. Mutations of three residues, T426, M430, and H434, which are located at regular intervals on the S6 α-helix, enhance cAMP binding. In contrast, mutations of two residues in close proximity, F431A and I432A, dampen the response. Our results demonstrate that movements of the structural elements near the activation gate directly affect ligand binding affinity, which is a simple mechanistic explanation that could be applied to the interpretation of ligand gating in general.
Includes: Supplementary data