Skip to Main Content


Skip Nav Destination



Mehrdel and Villalba-Galea found that removing the charge of residue R198 in the human KV7.2, a critical regulator of electrical excitability, caused a dramatic increase in pH sensitivity on the activity of this channel, with a more robust effect on deactivation.



The mechanisms governing the release of hepatic enzymes are largely unknown. It is hypothesized that hemodynamic changes, exerting mechanotransducing actions on the liver endothelium, play a crucial role in stimulating the release of enzymes from the intact liver.


Lucero et al. characterize the binding and transport of metformin metabolites by bacterial SMR transporters. Their findings provide insight into the mechanism of the SMRGdx subtype and into the co-opting of existing microbial transporters to manage new selective pressures.

Fedida et al. use experimental data and Markov model simulations of IKs kinetics to demonstrate the superiority of allosteric over sequential models in understanding the effects of the number of active voltage sensors on channel activation.


The study by Lucero et al. sheds light on the remarkable capabilities of bacterial transporters to adapt to new selective pressures. Their findings provide insight into the mechanism of a subtype of SMR transporters.

Research News

JGP study shows that members of the SMRGdx subtype can export the degradation products of metformin, helping bacteria adapt to high environmental levels of the commonly prescribed diabetes medication.

Close Modal

or Create an Account

Close Modal
Close Modal