Issues
-
Cover Image
Cover Image
Cover picture: Titin, the largest protein known, spans half the sarcomere, running from Z-disk to M-band. Titin’s size and resistance to stretch can be modified by alternative splicing of the spring region (enclosed in black oval and enlarged below), which consists of the PEVK region (yellow rectangles) and numerous immunoglobulin (Ig)-like domains (red rectangles). Dashed black box indicates Ig domains that were genetically deleted, stimulating a change in splicing in the PEVK region (see research article by Buck et al., 215–230).
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkEditorial Board
Meeting Summary
Generally Physiological
Commentary
Article
Evolutionary imprint of activation: The design principles of VSDs
Approaches from information theory and probabilistic modeling show that voltage-sensing domain sequences conform to a small set of rules.
Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy
The molecular strategy for alkali cation selectivity by a bacterial sodium channel resembles those of eukaryotic calcium and potassium channels, rather than those of eukaryotic sodium channels.
Drug-induced ion channel opening tuned by the voltage sensor charge profile
Introduction of charged residues into the voltage sensor provides insight into the molecular mechanisms underlying potassium channel sensitivity to polyunsaturated fatty acids.
PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels
Phosphatidylinositol 4,5-bisphosphate has a direct role in regulating receptor-operated TRPC channel activation and inactivation.
UV light activates a Gαq/11-coupled phototransduction pathway in human melanocytes
UV light stimulates a phosphoinositide signaling pathway in human melanocytes similar to those elicited by light in the eye.
Removal of immunoglobulin-like domains from titin’s spring segment alters titin splicing in mouse skeletal muscle and causes myopathy
Changes in titin splicing resulting in decreased size and increased stiffness lead to pathological changes in skeletal muscle.
Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution
Biophysical analyses indicate that the Ca2+-activated K+ channel SK2 binds calmodulin with multiple stoichiometries, distinct from the two SK2-two calmodulin stoichiometry identified by crystallography.
Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin
Calcium-mediated activation of the TMEM16A chloride channel does not depend on changes in phosphorylation status or the calcium-binding protein calmodulin.
Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating
Two gating transition states determine open probability of CFTR (the chloride channel mutated in cystic fibrosis), defining strategic targets for therapeutic intervention.
Aromatic–aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process
Interactions between aromatic amino acid residues in the pore helix and S5 transmembrane domain control gating of the Ca2+-activated potassium channel KCa3.1.
Email alerts
Most Read
Advertisement