Skip to Main Content

Advertisement

Issues

  • Cover Image

    Cover Image

    issue cover

    Cover picture: Titin, the largest protein known, spans half the sarcomere, running from Z-disk to M-band. Titin’s size and resistance to stretch can be modified by alternative splicing of the spring region (enclosed in black oval and enlarged below), which consists of the PEVK region (yellow rectangles) and numerous immunoglobulin (Ig)-like domains (red rectangles). Dashed black box indicates Ig domains that were genetically deleted, stimulating a change in splicing in the PEVK region (see research article by Buck et al., 215–230).

  • PDF Icon PDF LinkTable of Contents
  • PDF Icon PDF LinkEditorial Board
ISSN 0022-1295
EISSN 1540-7748
In this Issue

Meeting Summary

Generally Physiological

Commentary

Research Articles

Approaches from information theory and probabilistic modeling show that voltage-sensing domain sequences conform to a small set of rules.

The molecular strategy for alkali cation selectivity by a bacterial sodium channel resembles those of eukaryotic calcium and potassium channels, rather than those of eukaryotic sodium channels.

Introduction of charged residues into the voltage sensor provides insight into the molecular mechanisms underlying potassium channel sensitivity to polyunsaturated fatty acids.

Phosphatidylinositol 4,5-bisphosphate has a direct role in regulating receptor-operated TRPC channel activation and inactivation.

UV light stimulates a phosphoinositide signaling pathway in human melanocytes similar to those elicited by light in the eye.

Changes in titin splicing resulting in decreased size and increased stiffness lead to pathological changes in skeletal muscle.

Biophysical analyses indicate that the Ca2+-activated K+ channel SK2 binds calmodulin with multiple stoichiometries, distinct from the two SK2-two calmodulin stoichiometry identified by crystallography.

Calcium-mediated activation of the TMEM16A chloride channel does not depend on changes in phosphorylation status or the calcium-binding protein calmodulin.

Two gating transition states determine open probability of CFTR (the chloride channel mutated in cystic fibrosis), defining strategic targets for therapeutic intervention.

Interactions between aromatic amino acid residues in the pore helix and S5 transmembrane domain control gating of the Ca2+-activated potassium channel KCa3.1.

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal