Using the patch clamp technique, we examined the agonist-free, basal interaction between the muscarinic acetylcholine (m-ACh) receptor and the G protein (GK)-gated muscarinic K+ channel (IK.ACh), and the modification of this interaction by ACh binding to the receptor in single atrial myocytes of guinea pig heart. In the whole cell clamp mode, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S) gradually increased the IK.ACh current in the absence of agonists (e.g., acetylcholine). This increase was inhibited in cells that were pretreated with islet-activating protein (IAP, pertussis toxin) or N-ethylmaleimide (NEM). In inside-out patches, even in the absence of agonists, intracellular GTP caused openings of IK.ACh in a concentration-dependent manner in approximately 80% of the patches. Channel activation by GTP in the absence of agonist was much less than that caused by GTP-gamma S. The agonist-independent, GTP-induced activation of IK.ACh was inhibited by the A promoter of IAP (with nicotinamide adenine dinucleotide) or NEM. As the ACh concentration was increased, the GTP-induced maximal open probability of IK.ACh was increased and the GTP concentration for the half-maximal activation of IK.ACh was decreased. Intracellular GDP inhibited the GTP-induced openings of IK.ACh in a concentration-dependent fashion. The half-inhibition of IK.ACh openings occurred at a much lower concentration of GDP in the absence of agonists than in the presence of ACh. From these results, we concluded (a) that the interaction between the m-ACh receptor and GK is essential for basal stimulation of IK.ACh, and (b) that ACh binding to the receptor accelerates the turnover of GK and increases GK's affinity to GTP analogues over GDP.

This content is only available as a PDF.