The level of intracellular Ca in squid axons (both ionized and total Ca) was studied as a function of the experimental variables [Na]i, [Na]o, pHi, cyanide, and depolarization. Ionized Ca was measured by following the light emission of aequorin while total Ca was measured by the atomic absorption analysis of samples of axoplasm. Aequorin glow is known to be increased either by the application of Nao-free solutions or by depolarization produced by external solutions containing greater than normal K concentrations. The present results show that if [Na]i is low, the depolarization that is brought about by solutions with elevated [K] leads to a resting light emission that is decreased rather than increased, as is the case when [Na]i is high. In axons where [Na]i is varied, a comparison of the increments in light emission produced by the application first of Na-free and then of high-K solutions shows that they have an identical dependence on [Na]i, with a half-activation of Ca entry produced by an [Na]i of 25-30 mM. Changes in pHi affect the aequorin signal produced by depolarization, with acidification reducing and alkanization increasing the response. Cyanide did not greatly affect the size of the signal resulting from either Nao removal or that from depolarization.

This content is only available as a PDF.