We have studied the effect of N-bromoacetamide (NBA) on the behavior of single sodium channel currents in excised patches of rat myotube membrane at 10 degree C. Inward sodium currents were activated by voltage steps from holding potentials of about -100 mV to test potentials of -40 mV. The cytoplasmic-face solution was isotonic CsF. Application of NBA or pronase to the cytoplasmic face of the membrane irreversibly removed sodium channel inactivation, as determined by averaged single-channel records. Teh lifetime of the open channel at -40 mV was increased about 10-fold by NBA treatment without affecting the amplitude of single-channel currents. A binomial analysis was used both before and after treatment to determine the number of channels within the excised patch. NBA was shown to have little effect on activation kinetics, as determined by an examination of both the rising phase of averaged currents and measurements f the delay between the start of the pulse and the first channel opening. Our data support a kinetic model of sodium channel activation in which the rate constant leading back from the open state to the last closed state is slower than expected from a strict Hodgkin-Huxley model. The data also suggest that the normal open-channel lifetime is primarily determined by the inactivation process in the voltage range we have examined.

This content is only available as a PDF.