Histrionicotoxin, a toxin isolated from skin secretions of a Colombian arrow poison frog, Dendrobates histrionicus, decreased the amplitude and time-course of the endplate current, and altered the voltage dependence of the half-decay time. In addition, the toxin produced a characteristic nonlinearity in the current-voltage relationship of the endplate current when 3-s voltage conditioning steps were used. Reduction in time of the conditioning steps to 10 ms made the current-voltage relationship linear. The decrease in peak amplitude of the endplate current (epc) produced by histrionicotoxin measured during long hyperpolarizing conditioning steps was fitted by a single exponential function. The calculated rate constants ranged from 0.03 to 0.14 s-1 and varied with membrane potential at hyperpolarizing levels. The voltage- and time-dependent action of histrionicotoxin does not require an initial activation of receptors by acetylcholine (ACh). The characteristic of the current-voltage relationship can be accounted for by the observed voltage and time dependency of the attenuation of the endplate current amplitude in the presence of histrionicotoxin during long conditioning steps. These effects of histrionicotoxin on the peak amplitude, and on the voltage and time dependence of the epc were concentration-dependent and slowly reversible upon washing out the toxin. Thus, the voltage- and time-dependent action of histrionicotoxin at the endplate is related to an increase in the affinity between the toxin and the ACh receptor-ionic channel complex. This increase in affinity is postulated to be due to a conformational change of the macromolecule in the presence of histrionicotoxin which is demonstrated to be relatively slow, i.e., on the order of tens of seconds.

This content is only available as a PDF.