Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na+ channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10-6 M STX was 2.2 A2/cholesterol molecule at 25°C. From surface pressure measurements at constant cholesterol area (39 A2/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10-7 M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na+ channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

This content is only available as a PDF.