Sodium-rich myometrium, obtained from the uteri of pregnant rats, rapidly hyperpolarized when 4.6–120 mM potassium was added to the bathing medium at 37°C. Hyperpolarization was due to sodium pumping since the process was markedly temperature dependent, was abolished by ouabain, and required both intracellular sodium and extracellular potassium. The observed membrane potential exceeded the calculated potassium equilibrium potential during hyperpolarization providing evidence that sodium pumping was electrogenic. Hyperpolarization was reduced in the presence of chloride. The rate of sodium pumping may influence potassium permeability since potassium apparently did not short-circuit the pump during hyperpolarization.

This content is only available as a PDF.